Skip to main content
Log in

Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

HMGS functions in phytosterol biosynthesis, development and stress responses. F-244 could specifically-inhibit HMGS in tobacco BY-2 cells and Brassica seedlings. An update on HMGS from higher plants is presented.

Abstract

3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) is the second enzyme in the mevalonate pathway of isoprenoid biosynthesis and catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce S-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Besides HMG-CoA reductase (HMGR), HMGS is another key enzyme in the regulation of cholesterol and ketone bodies in mammals. In plants, it plays an important role in phytosterol biosynthesis. Here, we summarize the past investigations on eukaryotic HMGS with particular focus on plant HMGS, its enzymatic properties, gene expression, protein structure, and its current status of research in China. An update of the findings on HMGS from animals (human, rat, avian) to plants (Brassica juncea, Hevea brasiliensis, Arabidopsis thaliana) will be discussed. Current studies on HMGS have been vastly promoted by developments in biochemistry and molecular biology. Nonetheless, several limitations have been encountered, thus some novel advances in HMGS-related research that have recently emerged will be touched on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AACT:

Acetoacetyl-CoA thiolase

A. thaliana :

Arabidopsis thaliana

AtHMGS:

Arabidopsis thaliana HMGS

B. juncea :

Brassica juncea

BjHMGS:

Brassica juncea HMGS

BRs:

Brassinosteroids

BR60X2:

Brassinosteroid-6-oxidase 2

C. acuminate :

Camptotheca acuminate

CaHMGS:

Camptotheca acuminate HMGS

CoASH:

Coenzyme A

CPS:

Copalyl diphosphate synthase

C. roseus :

Catharanthus roseus

CrHMGS:

C. roseus HMGS

CYP710A1:

C-22 sterol desaturase

CYP76AH1:

A cytochrome P450 enzyme

DAP:

Days-after-pollination

DTNB:

Dithiobisnitrobenzoic acid

DWF1:

Δ24 Sterol reductase

DXR:

1-Deoxy-d-xylulose 5-phosphate reductoisomerase

DXS:

1-Deoxy-d-xylulose 5-phosphate synthase

F-244:

3,5,7-Trimethyl-12-hydroxy-13-hydroxymethyl-2,4-tetradecadiendioic acid 12,14-lactone

GA-3-P:

Glyceraldehyde 3-phosphate

GC–MS:

Gas chromatography–mass spectrometry

G. gallus :

Gallus gallus

GgHMGS C:

Gallus gallus HMGS (cytosolic)

H. brasiliensis :

Hevea brasiliensis

HbHMGS:

Hevea brasiliensis HMGS

HDR:

1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase

HDS:

1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase

HMG-CoA:

S-3-Hydroxy-3-methylglutaryl-CoA

HMGS:

HMG-CoA synthase

HMGR:

HMG-CoA reductase

HPLC:

High-performance liquid chromatography

H. sapiens :

Homo sapiens

HsHMGS C:

Homo sapiens HMGS (cytosolic)

HsHMGS2 M:

Homo sapiens HMGS2 (mitochondrial)

IDI:

Isopentenyl diphosphate isomerase

INSIG:

Insulin-induced gene protein

IPP:

Isopentenyl diphosphate

KSL:

Ent-kaurene synthase-like

M. auratus :

Mesocricetus auratus

MaHMGS C:

Mesocricetus auratus HMGS (cytosolic)

MaHMGS M1:

Mesocricetus auratus HMGS (mitochondrial variant 1)

MCT:

2C-methyl-d-erythritol 4-phosphate cytidyl transferase

MDS:

2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase

MEP:

2C-methyl-d-erythritol 4-phosphate

MJ:

Methyl jasmonate

MK:

Mevalonate kinase

MVA:

Mevalonate

OE:

Overexpressors

ORF:

Open reading frame

O. sativa :

Oryza sativa

OsHMGS:

Oryza sativa HMGS

Pi:

Inorganic phosphate

PMK:

Phosphomevalonate kinase

PPMD:

Diphosphomevalonate decarboxylase

PP-MVA:

Mevalonate 5-diphosphate

PR:

Pathogenesis-related

P. sylvestris :

Pinus sylvestris

PsHMGS:

Pinus sylvestris HMGS

Q10 :

Coenzyme Q10

RACE:

Rapid amplification of cDNA ends

R. norvegicus :

Rattus norvegicus

RnHMGS C:

Rattus norvegicus HMGS (cytosolic)

RnHMGS M:

Rattus norvegicus HMGS (mitochondrial)

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SA:

Salicylic acid

SCAP:

SREBP cleavage-activating protein

S. lycopersicum :

Solanum lycopersicum

SlHMGS:

Solanum lycopersicum HMGS

S. miltiorrhiza :

Salvia miltiorrhiza

SmHMGS:

Salvia miltiorrhiza HMGS

SMT2:

Sterol methyltransferase 2

SREBPs:

Sterol regulatory element-binding proteins

S. scrofa :

Sus scrofa

SsHMGS M:

Sus scrofa (mitochondrial)

T. media :

Taxus × media

TmHMGS:

Taxus × media HMGS

References

  • Adams SH, Alho CS, Asins G, Hegardt FG, Marrero PF (1997) Gene expression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in a poorly ketogenic mammal: effect of starvation during the neonatal period of the piglet. Biochem J 324(Pt1):65–73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alam A, Britton G, Powls R, Goad J (1991) Aspects related to 3-hydroxy-3-methylglutaryl-CoA synthesis in higher plants. Biochem Soc Trans 19:164S

    CAS  PubMed  Google Scholar 

  • Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C 1971:1623–1627

  • Alex D, Bach TJ, Chye ML (2000) Expression of Brassica juncea 3-hydroxy-3-methylglutaryl CoA synthase is developmentally regulated and stress-responsive. Plant J 22:415–426

    CAS  PubMed  Google Scholar 

  • Alexova R, Millar AH (2013) Proteomics of phosphate use and deprivation in plants. Proteomics 13:609–623

    CAS  PubMed  Google Scholar 

  • Ayté J, Gil-Gómez G, Haro D, Marrero PF, Hegardt FG (1990a) Rat mitochondrial and cytosolic 3-hydroxy-3-methylglutaryl-CoA synthases are encoded by two different genes. Proc Natl Acad Sci USA 87:3874–3878

    PubMed Central  PubMed  Google Scholar 

  • Ayté J, Gil-Gómez G, Hegardt FG (1990b) Nucleotide sequence of a rat liver cDNA encoding the cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase. Nucleic Acids Res 18:3642

    PubMed Central  PubMed  Google Scholar 

  • Bach TJ (1986) Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21:82–88

    CAS  PubMed  Google Scholar 

  • Bach TJ, Lichtenthaler HK (1983) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 59:50–60

    CAS  Google Scholar 

  • Bach TJ, Weber T, Motel A (1990) Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA in plants. Recent Adv Phytochem 24:1–82

    CAS  Google Scholar 

  • Bach TJ, Boronat A, Caelles C, Ferrer A, Weber T, Wettstein A (1991) Aspects related to mevalonate biosynthesis in plants. Lipids 26:637–648

    CAS  PubMed  Google Scholar 

  • Balasubramaniam S, Goldstein JL, Brown MS (1977) Regulation of cholesterol synthesis in rat adrenal gland through coordinate control of 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase activities. Proc Natl Acad Sci USA 74:1421–1425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bancos S, Szatmári AM, Castle J, Kozma-Bognár L, Shibata K, Yokota T, Bishop GJ, Nagy F, Szekeres M (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol 141:299–309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bell K, Saepudin E, Harrison P (1996) Irreversible inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A synthase from yeast by F-244 and (RS)-β-butyrolactone. Can J Chem 74:24–27

    CAS  Google Scholar 

  • Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y, Dixon RA, Broun P (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 149:499–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhangu-Uhlmann A (2011) The mevalonate pathway: a monitoring approach in plants by systems biology tools. Dissertation, ETH Zürich

  • Boucher Y, Kamekura M, Doolittle WF (2004) Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol Microbiol 52:515–527

    CAS  PubMed  Google Scholar 

  • Bradford PG, Awad AB (2007) Phytosterols as anticancer compounds. Mol Nutr Food Res 51:161–170

    CAS  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    CAS  PubMed  Google Scholar 

  • Cao J, Wang J, Qi W, Miao HH, Wang J, Ge L, DeBose-Boyd RA, Tang JJ, Li BL, Song BL (2007) Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab 6:115–128

    CAS  PubMed  Google Scholar 

  • Casals N, Roca N, Guerrero M, Gil-Gómez G, Ayté J, Ciudad CJ, Hegardt FG (1992) Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. Biochem J 283:261–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceccarelli N, Lorenzi R (1984) Growth inhibition by competitive inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase in Helianthus tuberosus tissue explants. Plant Sci Lett 34:269–276

    CAS  Google Scholar 

  • Chun KY, Vinarov DA, Zajicek J, Miziorko HM (2000) 3-Hydroxy-3-methylglutaryl-CoA synthase. A role for glutamate 95 in general acid/base catalysis of C–C bond formation. J Biol Chem 275:17946–17953

    CAS  PubMed  Google Scholar 

  • Chye ML, Tan CT, Chua NH (1992) Three genes encode 3-hydroxy-3-methylglutaryl coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg2 are differentially expressed. Plant Mol Biol 19:473–484

    CAS  PubMed  Google Scholar 

  • Clinkenbeard KD, Reed WD, Mooney RD, Lane MD (1975) Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzyme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J Biol Chem 250:3108–3116

    CAS  PubMed  Google Scholar 

  • Cui GH, Huang LQ, Tang XJ, Zhao JX (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478

    CAS  PubMed  Google Scholar 

  • Dashti N, Ontko JA (1979) Rate-limiting function of 3-hydroxy-3-methylglutaryl-coenzyme A synthase in ketogenesis. Biochem Med 22:365–374

    CAS  PubMed  Google Scholar 

  • Dooley KA, Millinder S, Osborne TF (1998) Sterol regulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene through a direct interaction between sterol regulatory element binding protein and the trimeric CCAAT-binding factor/nuclear factor Y. J Biol Chem 273:1349–1356

    CAS  PubMed  Google Scholar 

  • Durr IF, Rudney H (1960) The reduction of β-hydroxy-β-methylglutaryl coenzyme A to mevalonic acid. J Biol Chem 235:2572–2578

    CAS  PubMed  Google Scholar 

  • Esposito D, Rathinasabapathy T, Schmidt B, Shakarjian MP, Komarnytsky S, Raskin I (2013) Acceleration of cutaneous wound healing by brassinosteroids. Wound Rep Reg 21:688–696

    Google Scholar 

  • Ferguson JJ Jr, Rudney H (1959) The biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A in yeast. I. Identification and purification of the hydroxymethylglutaryl coenzyme-condensing enzyme. J Biol Chem 234:1072–1075

    CAS  PubMed  Google Scholar 

  • Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9:1951–1962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, Yang B, Peters RJ (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 11:5170–5173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ge L, Wang J, Qi W, Miao HH, Cao J, Qu YX, Li BL, Song BL (2008) The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7:508–519

    CAS  PubMed  Google Scholar 

  • Gil G, Goldstein JL, Slaughter CA, Brown MS (1986a) Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster. I. Isolation and sequencing of a full-length cDNA. J Biol Chem 261:3710–3716

    CAS  PubMed  Google Scholar 

  • Gil G, Brown MS, Goldstein JL (1986b) Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster. II. Isolation of the gene and characterization of the 5′ flanking region. J Biol Chem 261:3717–3724

    CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    CAS  PubMed  Google Scholar 

  • Gray JC (1987) Control of isoprenoid biosynthesis in higher plants. Adv Bot Res 14:25–91

    CAS  Google Scholar 

  • Greenspan MD, Yudkovitz JB, Lo CY, Chen JS, Alberts AW, Hunt VM, Chang MN, Yang SS, Thompson KL, Chiang YC, Chabala JC, Monaghan RL, Schwartz RL (1987) Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699. Proc Natl Acad Sci USA 84:7488–7492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L (2013) CYP76AH1 catalyses turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci USA 110:12108–12113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann M, Hemmerlin A, Gas-Pascual E, Gerber E, Tritsch D, Rohmer M, Bach TJ (2013) The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells [v2; ref status:indexed, http://f1000r.es/2af] F1000Res 2013, 2:170

  • He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131:1258–1269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hemmerlin A, Bach TJ (1998) Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J 14:65–74

    CAS  PubMed  Google Scholar 

  • Hemmerlin A, Bach TJ (2000) Farnesol-induced cell death and stimulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in tobacco cv Bright Yellow-2 cells. Plant Physiol 123:1257–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    CAS  PubMed  Google Scholar 

  • Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51:95–148

    CAS  PubMed  Google Scholar 

  • Henrikson CV, Smith PF (1966) Conversion of mevalonic acid to γ, γ-dimethylallyl pyrophosphate by Mycoplasma. J Bacteriol 92:701–706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hepper CM, Audley BG (1969) The biosynthesis of rubber from β-hydroxy-β-methylglutaryl-coenzyme A in Hevea brasiliensis latex. Biochem J 114:379–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirschey MD, Shimazu T, Capra JA, Pollard KS, Verdin E (2011) SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY) 3:635–641

    CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243–2254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459

    CAS  PubMed  Google Scholar 

  • Ishiguro S, Nishimori Y, Yamada M, Saito H, Suzuki T, Nakagawa T, Miyake H, Okada K, Nakamura K (2010) The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme A synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant Cell Physiol 51:896–911

    CAS  PubMed  Google Scholar 

  • Jacyno JM, Cutler HG, Roberts RG, Waters RM (1991) Effects on plant growth of the HMG-CoA synthase inhibitor, 1233A/F-244/L-659,699, isolated from Scopulariopsis candidus. Agric Biol Chem 55:3129–3131

    CAS  Google Scholar 

  • Jiang C, Kim SY, Suh DY (2008) Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol Phylogenet Evol 49:691–701

    CAS  PubMed  Google Scholar 

  • Johnston JA, Racusen DW, Bonner J (1954) The metabolism of isoprenoid precursors in a plant system. Proc Natl Acad Sci USA 40:1031–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kai G, Zhao L, Zhang L, Li Z, Guo B, Zhao D, Sun X, Miao Z, Tang K (2005) Characterization and expression profile analysis of a new cDNA encoding taxadiene synthase from Taxus media. J Biochem Mol Biol 38:668–675

    CAS  PubMed  Google Scholar 

  • Kai G, Miao Z, Zhang L, Zhao D, Liao Z, Sun X, Zhao L, Tang K (2006) Molecular cloning and expression analyses of a new gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Taxus × media. Biol Plant 50:359–366

    CAS  Google Scholar 

  • Kai G, Li S, Wang W, Lu Y, Wang J, Liao P, Cui L (2013) Molecular cloning and expression analysis of a gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Camptotheca acuminata. Russ J Plant Physiol 60:131–138

    CAS  Google Scholar 

  • Kattar-Cooley PA, Wang HH, Mende-Mueller LM, Miziorko HM (1990) Avian liver 3-hydroxy-3-methylglutaryl-CoA synthase: distinct genes encode the cholesterogenic and ketogenic isozymes. Arch Biochem Biophys 283:523–529

    CAS  PubMed  Google Scholar 

  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140:548–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948

    CAS  PubMed  Google Scholar 

  • Levy HR, Popják G (1960) Studies on the biosynthesis of cholesterol. 10. Mevalonic kinase and phosphomevalonic kinase from liver. Biochem J 75:417–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li JM, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    CAS  PubMed  Google Scholar 

  • Liu TF, Tang JJ, Li PS, Shen Y, Li JG, Miao HH, Li BL, Song BL (2012) Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab 16:213–225

    CAS  PubMed  Google Scholar 

  • Lombard J, Moreira D (2010) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99

    PubMed  Google Scholar 

  • Lynen F (1959) Incorporation of acetate into isoprenoids. In: Wolstenholme GEW (ed) Ciba foundation symposium on the biosynthesis of terpenes and sterols. Churchill, London, pp 95–116

    Google Scholar 

  • Lynen F (1967) Biosynthetic pathway from acetate to natural products. Activity of the enzymes in rubber synthesis. Pure Appl Chem 14:137–167

    CAS  PubMed  Google Scholar 

  • Lynen F, Henning U, Bublitz C, Sorbo B, Kroplin-Rueff L (1958) The chemical mechanism of acetic acid formation in the liver. Biochem Z 330:269–295

    CAS  PubMed  Google Scholar 

  • Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63:2809–2823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mascaró C, Buesa C, Ortiz JA, Haro D, Hegardt FG (1995) Molecular cloning and tissue expression of human mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Arch Biochem Biophys 317:385–390

    PubMed  Google Scholar 

  • Misra I, Miziorko HM (1996) Evidence for the interaction of avian 3-hydroxy-3-methylglutaryl-CoA synthase histidine 264 with acetoacetyl-CoA. Biochemistry 35:9610–9616

    CAS  PubMed  Google Scholar 

  • Misra I, Wang CZ, Miziorko HM (2003) The influence of conserved aromatic residues in 3-hydroxy-3-methylglutaryl-CoA synthase. J Biol Chem 278:26443–26449

    CAS  PubMed  Google Scholar 

  • Miziorko HM, Behnke CE (1985a) Active-site-directed inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by 3-chloropropionyl coenzyme A. Biochemistry 24:3174–3179

    CAS  PubMed  Google Scholar 

  • Miziorko HM, Behnke CE (1985b) Amino acid sequence of an active site peptide of avian liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. J Biol Chem 260:13513–13516

    CAS  PubMed  Google Scholar 

  • Miziorko HM, Behnke CE (1986) Active site directed inactivation of rat mammary gland fatty acid synthase by 3-chloropropionyl coenzyme A. Biochemistry 25:468–473

    CAS  PubMed  Google Scholar 

  • Miziorko HM, Lane MD (1977) 3-Hydroxy-3-methylgutaryl-CoA synthase. Participation of acetyl-S-enzyme and enzyme-S-hydroxymethylgutaryl-SCoA intermediates in the reaction. J Biol Chem 252:1414–1420

    CAS  PubMed  Google Scholar 

  • Miziorko HM, Clinkenbeard KD, Reed WD, Lane MD (1975) 3-Hydroxy-3-methylglutaryl coenzyme A synthase. Evidence for an acetyl-S-enzyme intermediate and identification of a cysteinyl sulfhydryl as the site of acetylation. J Biol Chem 250:5768–5773

    CAS  PubMed  Google Scholar 

  • Montamat F, Guilloton M, Karst F, Delrot S (1995) Isolation and characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl-CoA synthase. Gene 167:197–201

    CAS  PubMed  Google Scholar 

  • Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    CAS  PubMed  Google Scholar 

  • Nagegowda DA, Bach TJ, Chye ML (2004) Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochem J 383:517–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagegowda DA, Ramalingam S, Hemmerlin A, Bach TJ, Chye ML (2005) Brassica juncea HMG-CoA synthase: localization of mRNA and protein. Planta 221:844–856

    CAS  PubMed  Google Scholar 

  • Omura S (1976) The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev 40:681–697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Page RD (2002) Visualizing phylogenetic trees using TreeView. Curr Protoc Bioinform 6(6):2

    Google Scholar 

  • Peng LF, Schaefer EA, Maloof N, Skaff A, Berical A, Belon CA, Heck JA, Lin WY, Frick DN, Allen TM, Miziorko HM, Schreiber SL, Chung RT (2011) Ceestatin, a novel small molecule inhibitor of hepatitis C virus replication, inhibits 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J Infect Dis 204:609–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pojer F, Ferrer JL, Richard SB, Nagegowda DA, Chye ML, Bach TJ, Noel JP (2006) Structural basis for the design of potent and species-specific inhibitors of 3-hydroxy-3-methylglutaryl CoA synthases. Proc Natl Acad Sci USA 103:11491–11496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed WD, Clinkenbeard D, Lane MD (1975) Molecular and catalytic properties of mitochondrial (ketogenic) 3-hydroxy-3-methylglutaryl coenzyme A synthase of liver. J Biol Chem 250:3117–3123

    CAS  PubMed  Google Scholar 

  • Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol 144:347–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudney H (1957) The biosynthesis of β-hydroxy-β-methylglutaric acid. J Biol Chem 227:363–377

    CAS  PubMed  Google Scholar 

  • Rudney H, Ferguson JJ Jr (1957) The biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A. J Am Chem Soc 79:5580–5581

    CAS  Google Scholar 

  • Rudney H, Ferguson JJ Jr (1959) The biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A in yeast. II. The formation of hydroxymethylglutaryl coenzyme A via the condensation of acetyl coenzyme A and acetoacetyl coenzyme A. J Biol Chem 234:1076–1080

    CAS  PubMed  Google Scholar 

  • Russ AP, Ruzicka V, Maerz W, Appelhans H, Gross W (1992) Amplification and direct sequencing of a cDNA encoding human cytosolic 3-hydroxy-3-methylglutaryl-coenzyme A synthase. Biochim Biophys Acta 1132:329–331

    CAS  PubMed  Google Scholar 

  • Shafqat N, Turnbull A, Zschocke J, Oppermann U, Yue WW (2010) Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design. J Mol Biol 398:497–506

    CAS  PubMed  Google Scholar 

  • Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N (2010) Cytokinin regulates compound leaf development in tomato. Plant Cell 22:3206–3217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM, Jacobson MP, Verdin E (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sirinupong N, Suwanmanee P, Doolittle RF, Suvachittanont W (2005) Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis. Planta 221:502–512

    CAS  PubMed  Google Scholar 

  • Skaff DA, Miziorko HM (2010) A visible wavelength spectrophotometric assay suitable for high-throughput screening of 3-hydroxy-3-methylglutaryl-CoA synthase. Anal Biochem 396:96–102

    Google Scholar 

  • Smith JR, Osborne TF, Brown MS, Goldstein JL, Gil G (1988) Multiple sterol regulatory elements in promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J Biol Chem 263:18480–18487

    CAS  PubMed  Google Scholar 

  • Stewart PR, Rudney H (1966) The biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A in yeast IV. The origin of the thioester bond of β-hydroxy-β-methylglutaryl coenzyme A. J Biol Chem 241:1222–1225

    CAS  PubMed  Google Scholar 

  • Suwanmanee P, Suvachittanont W, Fincher GB (2002) Molecular cloning and sequencing of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase from Hevea brasiliensis (HBK) Mull Arg. Sci Asia 28:29–36

    CAS  Google Scholar 

  • Suwanmanee P, Sirinupong N, Suvachittanont W (2004) Regulation of the expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene in Hevea brasiliensis (B.H.K) Mull. Arg. Plant Sci 166:531–537

    CAS  Google Scholar 

  • Suwanmanee P, Sirinupong N, Suvachittanont W (2013) Regulation of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase and rubber biosynthesis of Hevea brasiliensis (B.H.K.) Mull. Arg. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms: new concepts and experimental approaches. Springer, New York, pp 315–327

    Google Scholar 

  • Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL, Song BL (2011) Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 13:44–56

    CAS  PubMed  Google Scholar 

  • Thompson GN, Hsu BY, Pitt JJ, Treacy E, Stanley CA (1997) Fasting hypoketotic coma in a child with deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. N Engl J Med 337:1203–1207

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1999) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Google Scholar 

  • Tomoda H, Kumagai H, Tanaka H, Omura S (1987) F-244 specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A synthase. Biochim Biophys Acta 922:351–356

    CAS  PubMed  Google Scholar 

  • Tomoda H, Ohbayashi N, Morikawa Y, Kumagai H, Omura S (2004) Binding site for fungal beta-lactone hymeglusin on cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase. Biochim Biophys Acta 1636:22–28

    CAS  PubMed  Google Scholar 

  • Van der Heijden R, Verpoorte R (1995) Metabolic enzymes of 3-hydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus. Plant Cell Tissue Organ Cult 43:85–88

    Google Scholar 

  • Van der Heijden R, De Boer-Hlupá V, Verpoorte R, Duine JA (1994) Enzymes involved in the metabolism of 3-hydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus. Plant Cell Tissue Organ Cult 38:345–349

    Google Scholar 

  • Vinarov DA, Miziorko HM (2000) 3-Hydroxy-3-methylglutaryl-coenzyme A synthase reaction intermediates: detection of a covalent tetrahedral adduct by differential isotope shift 13C nuclear magnetic resonance spectroscopy. Biochemistry 39:3360–3368

    CAS  PubMed  Google Scholar 

  • Vollmer SH, Mende-Mueller LM, Miziorko HM (1988) Identification of the site of the acetyl-S-enzyme formation on avian liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Biochemistry 27:4288–4292

    CAS  PubMed  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    PubMed  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H (2010) Overexpression of wild-type and mutant BjHMGS1 in transgenic model plants. Dissertation, The University of Hong Kong

  • Wang H, Nagegowda DA, Rawat R, Bouvier-Navé P, Guo DJ, Bach TJ, Chye ML (2012) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42

    CAS  PubMed  Google Scholar 

  • Wegener A, Gimbel W, Werner T, Hani J, Ernst D, Sandermann H Jr (1997) Molecular cloning of ozone-inducible protein from Pinus sylvestris L. with high sequence similarity to vertebrate 3-hydroxy-3-methylglutaryl-CoA-synthase. Biochim Biophys Acta 28:247–252

    Google Scholar 

  • Wentzinger LF, Bach TJ, Hartmann MA (2002) Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol 130:334–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson DH, Bates MW, Krebs HA (1968) Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J 108:353–361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wititsuwannakul R (1986) Diurnal variation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in latex of Hevea brasiliensis and its relation to rubber content. Experientia 42:44–45

    CAS  Google Scholar 

  • Woyengo TA, Ramprasath VR, Jones PJH (2009) Anticancer effects of phytosterols. Eur J Clin Nutr 63:813–820

    CAS  PubMed  Google Scholar 

  • Xin P, Yan J, Fan J, Chu J, Yan C (2013) An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol 162:2056–2066

    CAS  PubMed  Google Scholar 

  • Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y, Fang X, Liu R, Wang L, Chen X, Yang C (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS ONE 8:e80464

    PubMed Central  PubMed  Google Scholar 

  • Yuan Y, Yu J, Jiang C, Li M, Lin S, Wang X, Huang L (2013) Functional diversity of genes for the biosynthesis of paeoniflorin and its derivatives in Paeonia. Int J Mol Sci 14:18502–18519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yue WW, Oppermann U (2011) High-throughput structural biology of metabolic enzymes and its impact on human diseases. J Inherit Metab Dis 34:575–581

    CAS  PubMed  Google Scholar 

  • Zhang L, Yan X, Wang J, Li S, Liao P, Kai G (2011) Molecular cloning and expression analysis of a new putative gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Salvia miltiorrhiza. Acta Physiol Plant 33:953–961

    CAS  Google Scholar 

  • Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    CAS  PubMed  Google Scholar 

  • Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134:3234–3241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wilson and Amelia Wong Endowment Fund and the University of Hong Kong [CRCG 10400945, CRCG 104001061, University Postgraduate Fellowship (PL) and a studentship (HW)].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mee-Len Chye.

Additional information

Communicated by N. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, P., Wang, H., Hemmerlin, A. et al. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Plant Cell Rep 33, 1005–1022 (2014). https://doi.org/10.1007/s00299-014-1592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1592-9

Keywords

Navigation