Skip to main content
Log in

The plasma membrane-localised Ca2+-ATPase ACA8 plays a role in sucrose signalling involved in early seedling development in Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Arabidopsis Ca 2+ -ATPase ACA8 plays a role in sucrose signalling during early seedling development by integrating developmental signals with carbon source availability.

Abstract

Calcium (Ca2+) is an essential signal transduction element in eukaryotic organisms. Changes in the levels of intracellular Ca2+ affect multiple developmental processes in plants, including cell division, polar growth, and organogenesis. Here, we report that the plasma-membrane-localised Arabidopsis Ca2+-ATPase ACA8 plays a role in sucrose signalling during early seedling development. Disruption of the ACA8 gene elevated the expression of genes that encode transporters for Ca2+ efflux. The seedlings that carried a T-DNA insertion mutation in ACA8 experienced water stress during early development. This response was unrelated to inadequate osmoregulatory responses and was most likely caused by disruption of cell membrane integrity and severe ion leakage. In addition, aca8-1 seedlings displayed a significant decline in photosynthetic performance and arrested root growth after removal of sucrose from the growth medium. The two phenomena resulted from impaired photosynthesis, reduced cell proliferation in the root meristem and the sucrose control of cell-cycle events. All of the stress-response phenotypes were rescued when expression of ACA8 was restored in aca8-1 mutant. Taken together, our results indicate that ACA8-mediated Ca2+ signalling contributes to modulate early seedling development and coordinates root development with nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ainsworth EA, Bush DR (2011) Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol 155:64–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Batistič O, Kudla J (2010) Calcium: not just another ion. Cell biology of metals and nutrients. Springer, Berlin, pp 17–54

    Book  Google Scholar 

  • Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1–12

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    Article  PubMed Central  PubMed  Google Scholar 

  • Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2010) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol 154:1158–1171

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Jager SM, Maughan S, Dewitte W, Scofield S, Murray JA (2005) The developmental context of cell-cycle control in plants. Semin Cell Dev Biol 16:385–396

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377

    Article  PubMed  CAS  Google Scholar 

  • Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Haweker H, Lozano-Duran R, Njo MF, Beeckman T, Huettel B, Borst JW, Panstruga R, Robatzek S (2012) Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. Plant Physiol 159:798–809

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geiger D (2011) Plant sucrose transporters form a biophysical point of view. Mol Plant 4:395–406

    Article  PubMed  CAS  Google Scholar 

  • George L, Romanowsky SM, Harper JF, Sharrock RA (2008) The ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. Plant Physiol 146:716–728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Giacometti S, Marrano CA, Bonza MC, Luoni L, Limonta M, De Michelis MI (2012) Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana. J Exp Bot 63:1215–1224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hohl M, Schopfer P (1991) Water relations of growing Maize coleoptiles comparison between Mannitol and Polyethylene glycol 6000 as external osmotica for adjusting turgor pressure. Plant Physiol 95:716–722

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant cell 22:541–563

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  PubMed  CAS  Google Scholar 

  • Menges M, de Jager SM, Gruissem W, Murray JA (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41:546–566

    Article  PubMed  CAS  Google Scholar 

  • Minocha R, Martinez G, Lyons B, Long S (2009) Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species. Can J For Res 39:849–861

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  PubMed  CAS  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens SC (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JS, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sanchez I, Dynlacht BD (2005) New insights into cyclins, CDKs, and cell cycle control. Semin Cell Dev Biol 16:311–321

    Article  PubMed  CAS  Google Scholar 

  • Schiøtt M, Romanowsky SM, Bækgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Skylar A, Hong F, Chory J, Weigel D, Wu X (2010) STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development 137:541–549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Skylar A, Sung F, Hong F, Chory J, Wu X (2011) Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev Biol 351:82–89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Ann Rev Plant Biol 51:433–462

    Article  CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  PubMed  CAS  Google Scholar 

  • Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y, De Bodt S, Maere S, Laukens K, Pharazyn A, Ferreira PC, Eloy N, Renne C, Meyer C, Faure JD, Steinbrenner J, Beynon J, Larkin JC, Van de Peer Y, Hilson P, Kuiper M, De Veylder L, Van Onckelen H, Inze D, Witters E, De Jaeger G (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6:397

    PubMed Central  PubMed  Google Scholar 

  • Van’t Hof J (1966) Experimental control of DNA synthesizing and dividing cells in excised root tips of Pisum. Am J Bot 53:970–976

    Google Scholar 

  • Van’t Hof J, Rost T (1972) Cell proliferation in complex tissues: the control of the mitotic cycle of cell populations in the cultured root meristem of sunflower (Helianthus). Am J Bot 53:970–976

    Google Scholar 

  • Wahl V, Brand LH, Guo YL, Schmid M (2010) The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. BMC Plant Biol 10:285

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu X, Dabi T, Weigel D (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15:436–440

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  PubMed  CAS  Google Scholar 

  • Ziv M (1990) Vitrification: morphological and physiological disorders of in vitro plants. Micropropagation. Springer, Berlin, pp 45–69

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yanxia Jia for allowing the use of confocal laser scanning microscope, Ruoxi Fan for assistance on gene expression analysis, and Xiangshi Qin for plant growth. The research was supported by grants from the National Natural Science Foundation of China (NSFC 31300251), Kunming Institute of Botany (KSCX2-EW-J-24), Germplasm Bank of Wild Species, and CAS Innovation Program of Kunming Institute (540806321211), and 100-Talents Program of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Li.

Additional information

Communicated by P. Lakshmanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, X., Wang, R. et al. The plasma membrane-localised Ca2+-ATPase ACA8 plays a role in sucrose signalling involved in early seedling development in Arabidopsis . Plant Cell Rep 33, 755–766 (2014). https://doi.org/10.1007/s00299-014-1590-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1590-y

Keywords

Navigation