Skip to main content
Log in

A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

An insert mutation of YELLOW - GREEN LEAF2 , encoding Heme Oxygenase 1 , results in significant reduction of its transcript levels, and therefore impairs chlorophyll biosynthesis in rice.

Abstract

Heme oxygenase (HO) in higher plants catalyzes the degradation of heme to synthesize phytochrome precursor and its roles conferring the photoperiodic control of flowering in rice have been revealed. However, its involvement in regulating rice chlorophyll (Chl) synthesis is not fully explored. In this study, we isolated a rice mutant named yellow-green leaf 2 (ygl2) from a 60Co-irradiated population. Normal grown ygl2 seedlings showed yellow-green leaves with reduced contents of Chl and tetrapyrrole intermediates whereas an increase of Chl a/b ratio. Ultrastructural analyses demonstrated grana were poorly stacked in ygl2 mutant, resulting in underdevelopment of chloroplasts. The ygl2 locus was mapped to chromosome 6 and isolated via map-based cloning. Sequence analysis indicated that it encodes the rice HO1 and its identity was verified by transgenic complementation test and RNA interference. A 7-Kb insertion was found in the first exon of YGL2/HO1, resulting in significant reduction of YGL2 expressions in the ygl2 mutant. YGL2 was constitutively expressed in a variety of rice tissues with the highest levels in leaves and regulated by temperature. In addition, we found expression levels of some genes associated with Chl biosynthesis and photosynthesis were concurrently altered in ygl2 mutant. These results provide direct evidence that YGL2 has a vital function in rice Chl biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinate

Proto IX:

Protoporphyrin IX

Mg-Proto IX:

Mg-Protoporphyrin IX

Pchlide:

Protochlorophyllide

Chlide:

Chlorophyllide

GFP:

Green fluorescent protein

RNAi:

RNA interference

RT-PCR:

Reverse transcription polymerase chain reaction

qRT-PCR:

Quantitative RT-PCR

ChlH Mg:

Chelatase H subunit

ChlI:

Mg-chelatase I subunit

ChlD:

Mg-chelatase D subunit

PORA:

NADPH:Pchlide oxidoreductase

CAO1:

Chlide A oxygenase1

Cab1:

Chlorophyll a-b binding protein 1

Cab2:

Chlorophyll a-b binding protein 2

PsaA:

PSI P700 apoprotein A

PsbA:

Photosystem II protein A

References

  • Andres F, Galbraith DW, Talon M, Domingo C (2009) Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol 151:681–690

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2008) Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress. Biometals 21:433–441

    Article  PubMed  CAS  Google Scholar 

  • Beale SI, Weinstein JD (1991) Biochemistry and regulation of photosynthetic pigment formation in plants and algae. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, pp 155–235

    Chapter  Google Scholar 

  • Black D (2003) Mechanisms of alternative pre-messenger RNA splicing. Ann Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  • Chai CL, Fang J, Liu Y, Tong HN, Gong YQ, Wang YQ, Liu M, Wang YP, Qian QA, Cheng ZK, Chu CC (2011) ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol Biol 75:211–222

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Chao YY, Hsu YY, Kao CH (2013) Heme oxygenase is involved in H2O2-induced lateral root formation in apocynin-treated rice. Plant Cell Rep 32:219–226

    Article  PubMed  CAS  Google Scholar 

  • Chereskin BM, Wong YS, Castelfranco PA (1982) In vitro synthesis of the chlorophyll isocyclic ring : transformation of Magnesium-Protoporphyrin IX and Magnesium-Protoporphyrin IX Monomethyl Ester into Magnesium-2,4-Divinyl Pheoporphyrin A(5). Plant Physiol 70:987–993

    Article  PubMed  CAS  Google Scholar 

  • Cornejo J, Beale SI, Terry MJ, Lagarias JC (1992) Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins. J Biol Chem 267:14790–14798

    PubMed  CAS  Google Scholar 

  • Dai Z, Gao J, An K, Lee JM, Edwards GE, An G (1996) Promoter elements controlling developmental and environmental regulation of a tobacco ribosomal protein gene L34. Plant Mol Biol 32:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA 96:6541–6546

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Schubert HL, Reid JD, Iorg CD, Herou XA, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–7612

    Article  PubMed  CAS  Google Scholar 

  • Delaroche D, Cantrelle FX, Subra F, Van Heijenoort C, Guittet E, Jiao CY, Blanchoin L, Chassaing G, Lavielle S, Auclair C, Sagan S (2010) Cell-penetrating peptides with intracellular actin-remodeling activity in malignant fibroblasts. J Biol Chem 285:7712–7721

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555:40–44

    Article  PubMed  CAS  Google Scholar 

  • Grimm B (1998) Novel insights into the control of tetrapyrrole metabolism of higher plants. Curr Opin Plant Biol 1:245–250

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacteriumand sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399

    Article  PubMed  CAS  Google Scholar 

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Cone JW, Dekens RG, O’Herne-Robers EG, Spruit CJP, Kendrick RE (1985) Photomorphogenic responses of long hypocotyl mutants of tomato. J Plant Physiol 120:153–165

    Article  CAS  Google Scholar 

  • Kusumi K, Mizutani A, Nishimura M, Iba K (1997) A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J 12:1241–1250

    Article  CAS  Google Scholar 

  • Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68:1039–1050

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ (2006) The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. FEBS J 273:2594–2606

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Hu JJ (2011) HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information. BMC Bioinform 12:207

    Article  CAS  Google Scholar 

  • Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002a) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002b) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res 9:257–279

    Article  PubMed  CAS  Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang IH, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347

    PubMed  CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  PubMed  CAS  Google Scholar 

  • Ortiz de Montellano PR, Wilks A (2001) Heme oxygenase structure and mechanism. Adv Inorg Chem 51:359–407

    Article  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Ru¨ diger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002a) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002b) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  PubMed  CAS  Google Scholar 

  • Richard AT (1975) Biochemical spectroscopy, vol 1. Adam Hilger Ltd, London, pp 327–330

    Google Scholar 

  • Santiago-Ong M, Green RM, Tingay S (2001) shygrl1 is a mutant affected in multiple aspects of photomorphogenesis. Plant Physiol 126:587–600

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, Chen XL, Shu XL, Zhang X, Guo XP, Cheng ZJ, Lei CL, Qi CK, Jiang L, Wang H, Wan JM (2012) Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol 159:227–238

    Article  PubMed  CAS  Google Scholar 

  • Terry MJ, Kendrick RE (1996) The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J Biol Chem 271:21681–21686

    Article  PubMed  CAS  Google Scholar 

  • Terry MJ, Kendrick RE (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol 119:143–152

    Article  PubMed  CAS  Google Scholar 

  • Terry MJ, Wahleithner JA, Lagarias JC (1993) Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem Biophys 306:1–15

    Article  PubMed  CAS  Google Scholar 

  • Terry MJ, McDowell MT, Lagarias JC (1995) (3Z)- and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. J Biol Chem 270:11111–11118

    Article  PubMed  CAS  Google Scholar 

  • Terry MJ, Linley PJ, Kohchi T (2002) Making light of it: the role of plant heme oxygenases in phytochrome chromophore synthesis. Biochem Soc T 30:604–609

    Article  Google Scholar 

  • Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Google Scholar 

  • Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE (1996) The Phytochrome-Deficient pcd1 mutant of pea Is unable to convert heme to biliverdin IXα. Plant Cell 8:55–67

    PubMed  CAS  Google Scholar 

  • Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Xu D, Cui W, Shen W (2012) Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Exp Bot 63:3869–3883

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li JJ, Yoo J-H, Yoo S-C, Cho S-H, Koh H-J, Seo HS, Paek N-C (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Ren Y, Lv J, Wang Y, Liu F, Zhou F, Zhao S, Chen S, Peng C, Zhang X, Guo X, Cheng Z, Wang J, Wu F, Jiang L, Wan J (2013) Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta 237:279–292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wenbiao Shen (Nanjing Agricultural University) for his help in Heme oxygenase activity. This research was supported by the grants from the 863 program of China (2011AA10A101, 2012AA101101). National Transform Science and Technology Program (2011ZX08001-004). Jiangsu Science and Technology Development Program (BK2010016, BE2012303). Jiangsu Province Self-innovation Program (CX(12)1003) and Qing Lan Project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Jiang.

Additional information

Communicated by Z.-Y. Wang.

H. Chen, Z. Cheng and X. Ma contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4905 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Cheng, Z., Ma, X. et al. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32, 1855–1867 (2013). https://doi.org/10.1007/s00299-013-1498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1498-y

Keywords

Navigation