Skip to main content
Log in

High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An improved method for the Agrobacterium infiltration of epicotyl segments of ‘Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] and ‘Swingle’ citrumelo [Citrus paradisi Macf. X Poncirus trifoliata (L.) Raf.] was developed in order to increase transformation frequency. Sonication-assisted Agrobacterium-mediated transformation (SAAT), vacuum infiltration, and a combination of the two procedures were compared with conventional Agrobacterium-mediated inoculation method (‘dipping’ method). It was observed that the morphogenic potential of the epicotyl segments decreased as the duration of SAAT and vacuum treatments increased. Transient GUS expression was not affected by the different SAAT treatments, but it was significantly enhanced by the vacuum infiltration treatments. The highest transformation efficiencies were obtained when the explants were subjected to a combination of SAAT for 2 s followed by 10 min of vacuum infiltration. PCR and Southern blot analysis of the uidA gene were used to confirm the integration of the transgenes. The transformation frequencies achieved in this study (8.4% for ‘Pineapple’ sweet orange and 11.2% for ‘Swingle’ citrumelo) are the highest ones reported for both cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

NAA:

Naphtaleneacetic acid

GUS:

β-Glucuronidase

nptII:

Neomycin phosphotransferase II

SAAT:

Sonication-assisted Agrobacterium-mediated transformation

References

  • Acereto-Escoffié POM, Chi-Manzanero BH, Echeverría-Echeverría S, Grijalva R, Kay AJ, González-Estrada T, Castaño E, Rodrígues-Zapata LC (2005) Agrobacterium-mediated transformation of Musa acuminata cv. ‘Grand Nain’ scalps by vacuum infiltration. Sci Hortic 105:359–371. doi:10.1016/j.scienta.2005.01.028

    Article  CAS  Google Scholar 

  • Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • An G, Ebert PR, Miltra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual, A3. Kluwer, Dordrecht, pp 1–19

  • Ananthakrishnan G, Xia X, Amutha S, Singer S, Muruganantham M, Yablonsky S, Fischer E, Gaba V (2007) Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Rep 26:267–276. doi:10.1007/s00299-006-0235-1

    Article  PubMed  CAS  Google Scholar 

  • Beranová M, Rakouský S, Vávrová Z, Skalický T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linux usitatissimum L.). Plant Cell Tiss Org Cult 94:253–259. doi:10.1007/s11240-007-9335-z

    Article  Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313. doi:10.1007/BF00034957

    Article  PubMed  CAS  Google Scholar 

  • Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234

    Article  CAS  Google Scholar 

  • Canche-Moo RLR, Ku-Gonzalez A, Burgeff C, Loyola-Vargas VM, Rodríguez-Zapata LC, Castaño E (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tiss Org Cult 84:373–377. doi:10.1007/s11240-005-9036-4

    Article  Google Scholar 

  • Cervera M, Juárez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Peña L (1998) Genetic transformation and regeneration of mature tissue of woody fruit bypassing the juvenile stage. Transgenic Res 7:51–59

    Article  CAS  Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tiss Org Cult 70:51–60. doi:10.1023/A:1016009309176

    Article  CAS  Google Scholar 

  • Chee PP, Fober KA, Slightom JL (1989) Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiol 91:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Zhou H, Hironaka CM, Duncan DR, Coner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Costa MGC, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and the production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373. doi:10.1007/s00299-002-0533-1

    Article  CAS  Google Scholar 

  • Duan YX, Guo WW, Meng HJ, Tao DD, Deng XX (2007) High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis. Biol Plant 51:212–216. doi:10.1007/s10535-007-0043-7

    Article  CAS  Google Scholar 

  • Fleming GH, Olivares-Fuster O, Fatta Del-Bosco S, Grosser JW (2000) An alternative method of genetic transformation of sweet orange. In Vitro Cell Dev Biol Plant 36:450–455

    Article  CAS  Google Scholar 

  • Flores Solís JI, Mlejnek P, Studená K, Procházka S (2007) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant Soil Environ 49:255–260

    Google Scholar 

  • Gaba V, Kathiravan K, Amutha S, Singer S, Xiaodi X, Ananthakrishnan G (2006) The use of ultrasound in plant tissue culture. In: Gupta SD, Ybaraki Y (eds) Plant tissue culture engineering. Springer, Netherlands, pp 417–426

    Google Scholar 

  • Gutiérrez-E MA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of Citrus tristeza virus. Plant Cell Rep 16:745–753. doi:10.1007/s002990050313

    Article  Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M, Motoyoshi F (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn J Breed 40:199–207

    Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Humara JM, Lópes M, Ordás RJ (1999) Agrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Rep 19:51–58. doi:10.1007/s002990050709

    Article  CAS  Google Scholar 

  • Ikram-Ul-Haq (2004) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) via vacuum infiltration. Plant Mol Biol Rep 22:279–288

    Article  CAS  Google Scholar 

  • Jefferson RA, Kanavagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3001–3907

    Google Scholar 

  • Kayim M, Koc NK (2005) Improved transformation efficiency in citrus by plasmolysis treatment. J Plant Biochem Biotech 14:15–20

    CAS  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470. doi:10.1007/s00299-003-0710-x

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Park B-J, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197. doi:10.1007/s11032-005-6616-2

    Article  CAS  Google Scholar 

  • Liu Y, Yang H, Sakanishi A (2006) Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotech Adv 24:1–16. doi:10.1016/j.biotechadv.2005.04.002

    Article  CAS  Google Scholar 

  • Luth D, Moore GA (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss Org Cult 57:219–222. doi:10.1023/A:1006387900496

    Article  CAS  Google Scholar 

  • Meurer CA, Dinkins RD, Collins GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18:180–186. doi:10.1007/s002990050553

    Article  CAS  Google Scholar 

  • Molinari HBC, Bespalhok JC, Kobayashi AK, Pereira LFP, Vieira LGE (2003) Agrobacterium tumefaciens-mediated transformation of ‘Swingle’ citrumelo (Citrus paradisi Macf. X Poncirus trifoliata L. Raf.) using thin epicotyl sections. Sci Hortic 99:375–379. doi:10.1016/S0304-4238(03)00111-0

    Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242. doi:10.1007/BF00235073

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pathak MR, Hamzah RY (2008) An effective method of sonication-assisted Agrobacterium-mediated transformation of chickpeas. Plant Cell Tiss Org Cult 93:65–71. doi:10.1007/s11240-008-9344-6

    Article  Google Scholar 

  • Peña L, Cervera M, Navarro A, Pina JA, Durán-Vila N, Navarro L (1995a) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619. doi:10.1007/BF00232724

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Ortega C, Pina JA, Durán-Vila N, Navarro L (1995b) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737. doi:10.1007/s002990050311

    Article  Google Scholar 

  • Pérez-Molphe-Balch E, Ochoa-Alejo N (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes transformed tissues. Plant Cell Rep 17:591–596. doi:10.1007/s002990050448

    Article  Google Scholar 

  • Rodríguez A, Cervera M, Peris JE, Peña L (2008) The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes. Plant Cell Tiss Org Cult 93:97–106. doi:10.1007/s11240-008-9347-3

    Article  Google Scholar 

  • Santarém ER, Trick HN, Essing JS, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759. doi:10.1007/s002990050478

    Article  Google Scholar 

  • Stachlel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells which activate the T-DNA transfer process in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Tang W (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21:555–562. doi:10.1007/s00299-002-0550-0

    PubMed  CAS  Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989

    Article  PubMed  CAS  Google Scholar 

  • Trick H, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Trick H, Finer JJ (2000) Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication-assisted Agrobacterium-mediated transformation-treated soybean cotyledons. Lett Appl Microbiol 30:406–410

    Article  Google Scholar 

  • Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol 10:12–36

    Article  Google Scholar 

  • Xue R-O, Xie H-F, Zhang B (2006) A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol Lett 28:1551–1557. doi:10.1007/s10529-006-9123-6

    Article  PubMed  CAS  Google Scholar 

  • Zaragozá C, Muñoz-Bertomeu J, Arrilaga I (2004) Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep 22:832–838. doi:10.1007/s00299-004-0766-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq, FAPEMIG and FAPESB for financial support. M.L.P.O was recipient of scholarships from CAPES and CNPq (Grant number SWE 210112/2006-9) for her sandwich program training at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Gilberto Cardoso Costa.

Additional information

Communicated by G. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, M.L.P., Febres, V.J., Costa, M.G.C. et al. High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28, 387–395 (2009). https://doi.org/10.1007/s00299-008-0646-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0646-2

Keywords

Navigation