Skip to main content
Log in

Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

An Erratum to this article was published on 13 June 2009

Abstract

The voltage-dependent anion channel (VDAC) is a major outer mitochondrial membrane protein. It is well documented that VDAC plays an important role in apoptosis, a kind of programmed cell death, in mammalian systems. However, little is known about the role of the plant counterpart during the process of plant-specific cell death such as pathogen-induced hypersensitive response. To address this issue, we isolated three VDAC full-length cDNAs (NtVDAC1–3) from Nicotiana tabacum. The deduced products, NtVDACs, share 78–85% identity and retain the conserved eukaryotic mitochondrial porin signature distal to their C-terminal regions. Mitochondrial localization of three NtVDACs in plant cells was confirmed via a green fluorescent protein fusion method. Then, we addressed the main issue concerning pathogenesis relation. The N. benthamiana orthologues of NtVDACs were upregulated by challenge with the non-host pathogen Pseudomonas cichorii, but not after challenge with the virulent pathogen P. syringae pv. tabaci. Both the pharmaceutical inhibition of VDAC and silencing of NbVDACs genes compromised the non-host resistance against P. cichorii, suggesting the involvement of VDACs in defense against non-host pathogen. Involvement of NbVDACs in Bax-mediated cell death was also verified using a similar approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide translocator

CsA:

Cyclosporine A

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DEX:

Dexamethasone

DIDS:

Dihydro-4,4′ diisothiocyanostilbene-2,2′-disulfonic acid

GFP:

Green fluorescent protein

HA:

Hemagglutinin

HR:

Hypersensitive response

MPS:

Mitochondrial porin signature

MPT:

Mitochondrial permeability transition

PCD:

Programmed cell death

PCR:

Polymerase chain reaction

PR:

Pathogenesis-related

PTP:

Permeability transition pore

ROS:

Reactive oxygen species

TRV:

Tobacco rattle virus

VDAC:

Voltage-dependent anion channel

VIGS:

Virus-induced gene silencing

References

  • Adrain C, Martin SJ (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390–397

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:1233–1241

    Article  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aravind L, Dixit VM, Koonin EV (2001) Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277:1780–1787

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ (2004) Bax-induced cell death of Arabidopsis is mediated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27

    Article  PubMed  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  PubMed  CAS  Google Scholar 

  • Berberich T, Sano H, Kusano T (1999) Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol Gen Genet 262:534–542

    Article  PubMed  CAS  Google Scholar 

  • Brenner C, Grimm S (2006) The permeability transition pore complex in cancer cell death. Oncogene 25:4744–4756

    Article  PubMed  CAS  Google Scholar 

  • Clausen C, Ilkavets I, Thompson R, Philippar K, Vojta A, Möhlmann T, Neuhaus E, Fulgosi H, Soll J (2004) Intracellular localization of VDAC proteins in plants. Planta 220:30–37

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111:103–111

    Article  PubMed  CAS  Google Scholar 

  • Curtis MJ, Wolpert TJ (2002) The oat mitochondrial permeability transition and its implication in victorin binding and induced cell death. Plant J 29:295–312

    Article  PubMed  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493

    Article  PubMed  CAS  Google Scholar 

  • Dickman MB, Oltersdorf T, Li W, Clements T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 98:6957–6962

    Article  PubMed  CAS  Google Scholar 

  • Ferri KS, Kroemer G (2001) Mitochondria—the suicide organelles. Bioessays 23:111–115

    Article  PubMed  CAS  Google Scholar 

  • Godbole A, Varghese J, Sarin A, Mathew MK (2003) VDAC is conserved element of death pathways in plant and animal systems. Biochim Biophys Acta 1642:87–96

    Article  PubMed  CAS  Google Scholar 

  • Hikichi Y, Suzuki K, Toyoda K, Horikoshi M, Hirooka T, Okuno T (1998) Successive observation of growth and movement of genetically lux-marked Pseudomonas cichorii and the response of host tissues in the same lettuce leaf. Ann Phytopathol Soc Jpn 64:519–525

    CAS  Google Scholar 

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA 98:12295–12300

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax, hydrogen peroxide and salicylic acid -induced cell death. Plant Cell 16:21–32

    Article  PubMed  CAS  Google Scholar 

  • Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant Microbe Interact 17:131–139

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    Article  PubMed  CAS  Google Scholar 

  • Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96:7956–7961

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  PubMed  CAS  Google Scholar 

  • Madesh M, Hajnóczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1016

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L) cells. Plant J 33:425–434

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Malik KA, Miura M, Ohashi Y (1999) Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr Biol 9:775–778

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Kay SA, Chua N-H (1988) Analysis of gene expression in transgenic plants. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–29

    Google Scholar 

  • Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and application of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18:455–463

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  PubMed  CAS  Google Scholar 

  • Roosens N, Al Bitar F, Jacobs M, Homble F (2000) Characterization of a cDNA encoding a rice mitochondrial voltage-dependent anion channel and its gene expression studied upon. Biochim Biophys Acta 1463:470–476

    Article  PubMed  CAS  Google Scholar 

  • Sanchez FA, Santema JS, Hilhorst R, Visser AJ (1990) Fluorescence detection of enzymatically formed hydrogen peroxide in aqueous solution and in reversed micelles. Anal Biochem 187:129–132

    Article  Google Scholar 

  • Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H (2003) Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Genet Genomics 269:583–591

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y (1999) BcL-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Ide T, Yanagida T, Tsujimoto Y (2000) Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275:12321–12325

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Shimizu S, Matsuoka Y, Yoneda Y, Tsujimoto Y (2002) Activation of mitochondrial -dependent anion channel by apro-apoptotic BH3-only protein Bim. Oncogene 21:4944–4956

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Shimizu R, Nakajima R, Toyoda K, Shiraishi T, Ichinose Y (2003) Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response. Plant Physiol Biochem 41:165–174

    Article  CAS  Google Scholar 

  • Takabatake R, Ando Y, Seo S, Katou S, Tsuda S, Ohashi Y, Mitsuhara I (2007) MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance gene N-mediated hypersensitive cell death. Plant Cell Physiol 48:498–510

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signaling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    Article  PubMed  CAS  Google Scholar 

  • Wandrey M, Trevaskis B, Brewin N, Udvardi MK (2004) Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiol 134:182–193

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Chen Z (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol Plant Microbe Interact 13:183–190

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002) Mitochondrial oxidative burst involved in apoptotic response in oats. Plant J 30:567–579

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Arimura S, Hirata A, Niwa Y, Yun D-J, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005a) Mammalian Bax initiates plant cell death through organelle destruction. Plant Cell Rep 24:408–417

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Arimura S, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005b) Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann Bot 96:337–342

    Article  PubMed  CAS  Google Scholar 

  • Young MJ, Bay D, Hauser G, Court DA (2007) The evolutionary history of mitochondrial porins. BMC Evol Biol 7:31–52

    Article  PubMed  Google Scholar 

  • Yu XH, Perdue TD, Heimer YM, Jones AM (2002) Mitochondrial involvement in tracheary element programmed cell death. Cell Death Differ 9:189–198

    Article  PubMed  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Petit PX, Mignotte B, Kroemer G (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Drs I. Mitsuhara, Y. Niwa, Y. Ichinose, T. Shirakawa, H. Takahashi, D. Baulcombe, N.-H. Chua, and S. P. Dinesh-Kumar for providing vectors and bacterial strains. Dr. T. Berberich is acknowledged for critically reading the manuscript. This work was supported in part by Grant-in-Aid for Scientific Research for Plant Graduate Student from the Nara Institute of Science and Technology (supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan) to C. Tateda and Grant-in-Aids from the Japan Society for the Promotion of Science to T. Kusano (19658039) and Y. Takahashi (19780002), the Saito Gratitude Foundation to C. Tateda and the Sumitomo Foundation to Y. Takahashi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonobu Kusano.

Additional information

Communicated by R. Reski.

The nucleotide sequence reported in this paper has been submitted to DDBJ under the following accession numbers: NtVDAC1 (AB286176), NtVDAC2 (AB286177), and NtVDAC3 (AB286178).

An erratum to this article can be found at http://dx.doi.org/10.1007/s00299-009-0727-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tateda, C., Yamashita, K., Takahashi, F. et al. Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death. Plant Cell Rep 28, 41–51 (2009). https://doi.org/10.1007/s00299-008-0630-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0630-x

Keywords

Navigation