Skip to main content

Advertisement

Log in

Metabolomics study of fatigue in patients with rheumatoid arthritis naïve to biological treatment

  • Original Article - Food for Thought
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Fatigue occurs in all chronic inflammatory diseases, in cancer, and in some neurological conditions. Patients often regard fatigue as one of their most debilitating problems, but currently there is no established treatment and the mechanisms that lead to and regulate fatigue are incompletely understood. Our objective was to more completely understand the physiology of this phenomenon. Twenty-four patients with rheumatoid arthritis (RA) naïve to treatment with biological drugs were enrolled for the study. Fatigue was measured with a fatigue visual analogue scale (fVAS). Ethylenediaminetetraacetic acid (EDTA) plasma samples were subjected to gas chromatography–time-of-flight mass spectrometry (GC/MS-TOF)-based metabolite profiling. Obtained metabolite data were evaluated by multivariate data analysis with orthogonal projections to latent structures (OPLS) method to pinpoint metabolic changes related to fatigue severity. A significant multivariate OPLS model was obtained between the fVAS scores and the measured metabolic levels. Increasing fatigue scores were associated with a metabolic pattern characterized by down-regulation of metabolites from the urea cycle, fatty acids, tocopherols, aromatic amino acids, and hypoxanthine. Uric acid levels were increased. Apart from fatigue, we found no other disease-related variables that might be responsible for these changes. Our MS-based metabolomic approach demonstrated strong associations between fatigue and several biochemical patterns related to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kirwan JR, Minnock P, Adebajo A, Bresnhan B, Choy E, De Wit M et al (2007) Patient perspective: fatigue as a recommended patient centered outcome measure in rheumatoid arthritis. J Rheumatol 34:1174–1177

    PubMed  Google Scholar 

  2. Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav R 12:123–137

    Article  CAS  Google Scholar 

  3. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelly KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Norheim KB, Jonsson G, Omdal R (2011) Biological mechanisms of chronic fatigue. Rheumatology 50:1009–1018

    Article  CAS  PubMed  Google Scholar 

  5. Harboe E, Tjensvoll AB, Vefring HK, Goransson LG, Kvaloy JT, Omdal R (2009) Fatigue in primary Sjogren’s syndrome—A link to sickness behaviour in animals? Brain Behav Immun 23:1104–1108

    Article  CAS  PubMed  Google Scholar 

  6. Norheim KB, Harboe E, Goransson LG, Omdal R (2012) Interleukin-1 inhibition and fatigue in primary Sjogren’s syndrome—A double blind, randomised clinical trial. PLoS One 7:e30123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366

    Article  CAS  PubMed  Google Scholar 

  8. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gabrielli A, Avvedimento EV, Krieg T (2009) Mechanisms of disease: scleroderma. New Engl J Med 360:1989–2003

    Article  CAS  PubMed  Google Scholar 

  10. Brkic S, Tomic S, Maric D, Mikic AN, Turkulov V (2010) Lipid peroxidation is elevated in female patients with chronic fatigue syndrome. Med Sci Monitor 16:628–632

    Google Scholar 

  11. Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJF (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Bio Med 39:584–589

    Article  CAS  Google Scholar 

  12. Avalos I, Chung CP, Oeser A, Milne GL, Morrow JD, Gebretsadik T et al (2007) Oxidative stress in systemic lupus erythematosus: relationship to disease activity and symptoms. Lupus 16:195–200

    Article  CAS  PubMed  Google Scholar 

  13. Chung CP, Titova D, Oeser A, Randels M, Avalos I, Milne GL et al (2009) Oxidative stress in fibromyalgia and its relationship to symptoms. Clin Rheumatol 28:435–438

    Article  PubMed  PubMed Central  Google Scholar 

  14. Segal BM, Thomas W, Zhu X, Diebes A, McElvain G, Baechler E et al (2012) Oxidative stress and fatigue in systemic lupus erythematosus. Lupus 21:984–992

    Article  CAS  PubMed  Google Scholar 

  15. Giera M, Ioan-Facsinay A, Toes R, Gao F, Dalli J, Deelder AM et al (2012) Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim Biophys Acta 1821:1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fuchs B, Schiller E, Wagner U, Hantzschel H, Arnold K (2005) The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by P-31 NMR and MALDI-TOF MS. Clin Biochem 38:925–933

    Article  CAS  PubMed  Google Scholar 

  17. Kim S, Hwang J, Xuan J, Jung YH, Cha HS, Kim KH (2014) Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS One 9:e97501

    Article  PubMed  PubMed Central  Google Scholar 

  18. Young SP, Kapoor SR, Viant MR, Byrne JJ, Filer A, Buckley CD et al (2013) The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum 65:2015–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madsen RK, Lundstedt T, Gabrielsson J, Sennbro CJ, Alenius GM, Moritz T et al (2011) Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res Ther 13:R19

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Z, Chen Z, Yang S, Wang Y, Yu L, Zhang B et al (2012) (1)H NMR-based metabolomic analysis for identifying serum biomarkers to evaluate methotrexate treatment in patients with early rheumatoid arthritis. Exp Ther Med 4:165–171

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kapoor SR, Filer A, Fitzpatrick MA, Fisher AB, Taylor PC, Buckley CD et al (2013) Metabolic profiling predicts response to anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis. Arthritis Rheum 65:1448–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Madsen R, Rantapaa-Dahlqvist S, Lundstedt T, Moritz T, Trygg J (2012) Metabolic responses to change in disease activity during tumor necrosis factor inhibition in patients with rheumatoid arthritis. J Proteome Res 11:3796–3804

    Article  CAS  PubMed  Google Scholar 

  23. Lauridsen MB, Bliddal H, Christensen R, Danneskiold-Samsoe B, Bennett R, Keun H et al (2010) 1H NMR spectroscopy-based interventional metabolic phenotyping: a cohort study of rheumatoid arthritis patients. J Proteome Res 9:4545–4553

    Article  CAS  PubMed  Google Scholar 

  24. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd et al (2010) 2010 rheumatoid arthritis classification criteria: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 69:1580–1588

    Article  PubMed  Google Scholar 

  25. Wells G, Becker JC, Teng J, Dougados M, Schiff M, Smolen J et al (2009) Validation of the 28-joint Disease Activity Score (DAS28) and European league against rheumatism response criteria based on C-reactive protein against disease progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on erythrocyte sedimentation rate. Ann Rheum Dis 68:954–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balsa A, Carmona L, Gonzalez-Alvaro I, Belmonte MA, Tena X, Sanmarti R et al (2004) Value of Disease Activity Score 28 (DAS28) and DAS28-3 compared to American college of rheumatology-defined remission in rheumatoid arthritis. J Rheumatol 31:40–46

    PubMed  Google Scholar 

  27. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD (1989) The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46:1121–1123

    Article  CAS  PubMed  Google Scholar 

  28. Wolfe F, Hawley DJ, Wilson K (1996) The prevalence and meaning of fatigue in rheumatic disease. J Rheumatol 23:1407–1417

    CAS  PubMed  Google Scholar 

  29. Jiye A, Trygg J, Gullberg J, Johannson AI, Johnsson P, Antti H et al (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77:8086–8094

    Article  Google Scholar 

  30. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemometr 16:119–128

    Article  CAS  Google Scholar 

  31. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Schockor JP et al (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122

    Article  CAS  PubMed  Google Scholar 

  32. Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  33. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jack-knife, and cross-validation. Am Stat 37:36–48

    Google Scholar 

  34. Xia JG, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(W1):W127–W133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Villamena FA (2013) Molecular basis of oxidative stress: chemistry, mechanisms, and disease pathogenesis. Wiley, Hoboken

    Book  Google Scholar 

  36. Winyard PG, Ryan B, Eggleton P, Nissim A, Taylor E, Lo Faro ML et al (2011) Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochem Soc T 39:1226–1232

    Article  CAS  Google Scholar 

  37. Jones MG, Cooper E, Amjad S, Goodwin CS, Barron JL, Chalmers RA (2005) Urinary and plasma organic acids and amino acids in chronic fatigue syndrome. Clin Chim Acta 361:150–158

    Article  CAS  PubMed  Google Scholar 

  38. Kurup RK, Kurup PA (2003) Isoprenoid pathway dysfunction in chronic fatigue syndrome. Acta Neuropsychiatr 15:266–273

    Article  PubMed  Google Scholar 

  39. Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Bio Med 66:3–12

    Article  CAS  Google Scholar 

  40. Vasanthi P, Nalini G, Rajasekhar G (2009) Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis 12:29–33

    Article  PubMed  Google Scholar 

  41. Armstrong CW, McGregor NR, Sheedy JR, Buttfield I, Butt HL, Gooley PR (2012) NMR metabolic profiling of serum identifies amino acid disturbances in chronic fatigue syndrome. Clin Chim Acta 413:1525–1531

    Article  CAS  PubMed  Google Scholar 

  42. Balboa MA, Balsinde J (2006) Oxidative stress and arachidonic acid mobilization. Biochim Biophys Acta 1761:385–391

    Article  CAS  PubMed  Google Scholar 

  43. Keyser RE, Rus V, Cade WT, Kalappa N, Flores RH, Handwerger BS (2003) Evidence for aerobic insufficiency in women with systemic lupus erythematosus. Arthritis Rheum 49:16–22

    Article  PubMed  Google Scholar 

  44. Grimstad T, Norheim KB, Isaksen K, Leitao K, Hetta AK, Carlsen A et al (2015) Fatigue in newly diagnosed inflammatory bowel disease. J Crohns Colitis 9:725–730

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Swedish Research Council Grant No. 2011-6044. KN was funded by the Norwegian Western Health Authorities (Grant No: 911783). RO received an unrestricted grant from Pfizer of 100,000 NOK for research on fatigue in RA and in ankylosing spondylitis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Trygg.

Ethics declarations

Conflict of interest

The authors declare that they have no other conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Johan Trygg and Roald Omdal have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surowiec, I., Gjesdal, C.G., Jonsson, G. et al. Metabolomics study of fatigue in patients with rheumatoid arthritis naïve to biological treatment. Rheumatol Int 36, 703–711 (2016). https://doi.org/10.1007/s00296-016-3426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-016-3426-2

Keywords

Navigation