Skip to main content

Advertisement

Log in

Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model

Rheumatology International Aims and scope Submit manuscript

Abstract

Articular cartilage deterioration, which includes cartilage degradation and chondrocyte hypertrophy, is a hallmark of degenerative joint diseases (DJD). Chondrocyte hypertrophy is initiated in the deep layer of the cartilage; thus, a robust explants model for investigation of hypertrophy should include this zone. The aim of this study was to characterize and investigate the hypertrophy-promoting potential of different endogenous factors on an ex vivo articular cartilage model. The full-depth cartilage explants were harvested from bovine femoral condyle and cultured for 13 days in different conditions: 10 ng/ml oncostatin M + 20 ng/ml TNF-α; 100 ng/ml IGF1; 10–100 ng/ml bFGF; 10–100 ng/ml BMP2; 50 μg/ml ascorbic acid in combination with 10 mM β-glycerophosphate; and 20–100 ng/ml triiodothyronine. The cellular activity and morphology, degradation, formation and calcification, and expression level of hypertrophic markers were investigated. The hypertrophic factors tested all induced cellular activity and marked morphological changes starting at day 4, however, not in a synchronized manner. Both cartilage degradation and formation were induced by T3 (P < 0.05). Only T3 had a full hypertrophic gene expression profile (P < 0.05). We developed and characterized a novel model for investigation of chondrocyte hypertrophy. We speculated that this can become an important investigatory tool for investigation of matrix turnover, chondrocyte hypertrophy and cartilage calcification that are associated with DJD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DJD:

Degenerative joint disease

OA:

Osteoarthritis

FDC:

Full-depth cartilage

TNF-α:

Tumor necrosis factor α

IGF1:

Insulin-like growth factor I

bFGF:

Basic fibroblast factor

BMP2:

Bone morphogenetic protein 2

A + G:

Ascorbic acid + β-glycerophosphate

T3:

Triiodothyronine

ALP:

Alkaline phosphatase

COLX:

Type X collagen

IHH:

Indian hedgehog

MMP13:

Collagenase 3

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  1. Abramson S, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11:227–235

    Article  PubMed  Google Scholar 

  2. Hayami T, Pickarski M, Zhuo Y et al (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243

    Google Scholar 

  3. Davidson R, Waters J, Kevorkian L et al (2006) Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther 8:124–133

    Article  Google Scholar 

  4. Bay-Jensen AC, Hoegh-Madsen S, Dam E et al (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 30:435–442

    Google Scholar 

  5. Pritzker KPH, Gay S, Jimenez SA et al (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartil 14:13–29

    Google Scholar 

  6. Pufe T, Petersen W, Tillmann B et al (2001) Splice variants VEGF121 and VEGF165 of the angiogenic peptide vascular endothelial cell growth factor are expressed in the synovial tissue of patients with rheumatoid arthritis. J Rheumatol 28:1482–1485

    Google Scholar 

  7. Hiroshi K (2008) Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells 25:1–6

    Google Scholar 

  8. Jean-Marc B, Didier P, Farida D et al (2010) Cellular senescence is a common characteristic shared by preneoplastic and osteo-arthritic tissue. Open Rheumatol J 4:10–14

    Google Scholar 

  9. Pullig O, Weseloh G, Ronneberger D-L, Käkönen S-M et al (2000) Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 67:230–240

    Article  PubMed  CAS  Google Scholar 

  10. Steffan DB, Eline PS, Ingrid M (2008) New insights into osteoarthritis: recent susceptibility genes in osteoarthritis. Curr Opin Rheumatol 20:553–559

    Article  Google Scholar 

  11. Mackie EJ, Ahmed YA, Tatarczuch L et al (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62

    Article  PubMed  CAS  Google Scholar 

  12. Minina E, Wenzel HM, Kreschel C et al (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523–4534

    Google Scholar 

  13. Grimsrud CD, Romano PR, D’Souza M et al (2001) BMP signaling stimulates chondrocyte maturation and the expression of Indian hedgehog. J Orthop Res 19:18–25

    Article  PubMed  CAS  Google Scholar 

  14. Steinert A, Proffen B, Kunz M et al (2009) Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res Ther 11:148–162

    Article  Google Scholar 

  15. Minina E, Kreschel C, Naski MC et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449

    Google Scholar 

  16. Luisa L, Zeling N, Eleanor BG et al (2009) Thyroid hormone treatment of cultured chondrocytes mimics in vivo stimulation of collagen X mRNA by increasing BMP 4 expression. J Cell Physiol 219:595–605

    Article  Google Scholar 

  17. Wang L, Shao YY, Ballock RT (2007) Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J Bone Miner Res 22:1988–1995

    Article  PubMed  CAS  Google Scholar 

  18. Yoshinori I, Brian RG, Roy EW et al (1998) Thyroid hormone inhibits growth and stimulates terminal differentiation of epiphyseal growth plate chondrocytes. J Bone Miner Res 13:1398–1411

    Article  Google Scholar 

  19. Jiang J, Leong NL, Mung JC et al (2008) Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthritis Cartil 16:70–82

    Google Scholar 

  20. Emily EC, John PF (2010) Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann Biomed Eng 38:3371–3388

    Article  Google Scholar 

  21. Sumer EU, Sondergaard BC, Rousseau JC et al (2007) MMP and non-MMP-mediated release of aggrecan and its fragments from articular cartilage: a comparative study of three different aggrecan and glycosaminoglycan assays. Osteoarthritis Cartil 15:212–221

    Google Scholar 

  22. Wang B, Chen P, Jensen AC et al (2009) Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments. BMC Res Notes 2:259–266

    Article  PubMed  Google Scholar 

  23. Bay-Jensen AC, Liu Q, Byrjalsen I et al (2011) Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM–Increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 44:423–429

    Article  PubMed  CAS  Google Scholar 

  24. Teixeira CC, Hatori M, Leboy PS et al (1995) A rapid and ultrasensitive method for measurement of DNA, calcium and protein content, and alkaline phosphatase activity of chondrocyte cultures. Calcif Tissue Int 56:252–256

    Article  PubMed  CAS  Google Scholar 

  25. Sondergaard BC, Wulf H, Henriksen K et al (2006) Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis Cartil 14:759–768

    Google Scholar 

  26. Fundel K, Haag J, Gebhard PM et al (2008) Normalization strategies for mRNA expression data in cartilage research. Osteoarthritis Cartil 16:947–955

    Google Scholar 

  27. Sondergaard BC, Henriksen K, Wulf H et al (2006) Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthritis Cartil 14:738–748

    Google Scholar 

  28. Johansson N, Saarialho-Kere U, Airola K et al (1997) Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Cell 208:387–397

    CAS  Google Scholar 

  29. D’Angelo M, Yan Z, Nooreyazdan M et al (2000) MMP-13 is induced during chondrocyte hypertrophy. J Cell Biochem 77:678–693

    Article  PubMed  Google Scholar 

  30. Buckwalter JA, Rosenberg LC, Ungar R (1987) Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int 41:228–236

    Article  PubMed  CAS  Google Scholar 

  31. Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72

    Google Scholar 

  32. Matukas VJ, Krikos GA (1968) Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J Cell Biol 39:43–48

    Google Scholar 

  33. Wroblewski J, Edwall-Arvidsson C (1995) Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J Bone Miner Res 10:735–742

    Article  PubMed  CAS  Google Scholar 

  34. van Beuningen HM, Glansbeek HL, van der Kraan PM et al (1998) Differential effects of local application of BMP-2 or TGF-[beta]1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartil 6:306–317

    Article  Google Scholar 

  35. Alini M, Kofsky Y, Wu W et al (1996) In serum-free culture thyroid hormones can induce full expression of chondrocyte hypertrophy leading to matrix calcification. J Bone Miner Res 11:105–113

    Article  PubMed  CAS  Google Scholar 

  36. Alini M, Carey D, Hirata S et al (1994) Cellular and matrix changes before and at the time of calcification in the growth plate studied in vitro: arrest of type X collagen synthesis and net loss of collagen when calcification is initiated. J Bone Miner Res 9:1077–1087

    Article  PubMed  CAS  Google Scholar 

  37. Ameye LG, Young MF (2006) Animal models of osteoarthritis: lessons learned while seeking the ‘Holy Grail’. Curr Opin Rheumatol 18:537–547

    Article  PubMed  Google Scholar 

  38. Vincent T, Hermansson M, Bolton M et al (2002) Basic FGF mediates an immediate response of articular cartilage to mechanical injury. Proc Natl Acad Sci U S A 99:8259–8264

    Google Scholar 

  39. Macias D, Ganan Y, Sampath TK et al (1997) Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124:1109–1117

    Google Scholar 

  40. Nakase T, Miyaji T, Tomita T et al (2003) Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthritis Cartil 11:278–284

    Article  CAS  Google Scholar 

  41. Robson H, Siebler T, Stevens DA et al (2000) Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141:3887–3897

    Google Scholar 

  42. Meulenbelt I, Min JL, Bos S et al (2008) Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet 17:1867–1875

    Google Scholar 

  43. Coe MR, Summers TA, Parsons SJ et al (1992) Matrix mineralization in hypertrophic chondrocyte cultures. Beta glycerophosphate increases type X collagen messenger RNA and the specific activity of pp 60c-src kinase. Bone Miner 18:91–106

    Article  PubMed  CAS  Google Scholar 

  44. Descalzi Cancedda F, Gentili C, Manduca P et al (1992) Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol 117:427–435

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Research Foundation (Den Danske Forskningsfond) and in part by the Ministry of Science Technology and Innovation, Denmark.

Conflict of interest

Morten A. Karsdal owns stock in Nordic Bioscience A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingping Chen-An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen-An, P., Andreassen, K.V., Henriksen, K. et al. Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model. Rheumatol Int 33, 401–411 (2013). https://doi.org/10.1007/s00296-012-2368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-012-2368-6

Keywords

Navigation