Skip to main content
Log in

Effects of SLC2A9 variants on uric acid levels in a Korean population

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Elevated uric acid levels are associated with a variety of adverse health risks. Genome-wide association studies have identified several candidate genes associated with serum uric acid levels, including SLC2A9. We carried out a replication study of SLC2A9 variants in two Korean cohorts. A total of 961 participants in Seoul City were genotyped using a genome-wide marker panel, and 1,859 participants in the Bundang-Gu area were used for a replication study with a selected marker. Multivariate linear regression models were employed to test for genotypic effects on uric acid levels while adjusting for age, sex, and smoking status using an additive model. The top single nucleotide polymorphism associated with uric acid levels was rs4529048 in the SLC2A9 gene on chromosome 4 (P = 2.12 × 10−6 in the Seoul City sample; P = 1.55 × 10−9 in the Bundang-Gu sample). The meta-analysis P value for rs4529048 in the combined 2,820 individuals was 1.17 × 10−14. This study demonstrates that genetic variants in SLC2A9 influence uric acid levels in Korean adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Richette P, Bardin T (2010) Gout. Lancet 375:318–328

    Article  PubMed  CAS  Google Scholar 

  2. van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, Caulfield MJ, Navis G (2010) Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet 19:387–395

    Article  PubMed  Google Scholar 

  3. Kolz M, Johnson T, Sanna S et al (2009) Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5:e1000504

    Article  PubMed  Google Scholar 

  4. Wallace C, Newhouse SJ, Braund P et al (2008) Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82:139–149

    Article  PubMed  CAS  Google Scholar 

  5. Caulfield MJ, Munroe PB, O’Neill D et al (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5:e197

    Article  PubMed  Google Scholar 

  6. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42:210–215

    Article  PubMed  CAS  Google Scholar 

  7. Charles BA, Shriner D, Doumatey A, Chen G, Zhou J, Huang H, Herbert A, Gerry NP, Christman MF, Adeyemo A, Rotimi CN (2011) A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics 4(4):17

    Google Scholar 

  8. Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372:1953–1961

    Article  PubMed  CAS  Google Scholar 

  9. Hamajima N, Okada R, Kawai S, Hishida A, Morita E, Yin G, Wakai K, Matsuo H, Inoue H, Takada Y, Asai Y, Mori A, Naito M (2011) Significant association of serum uric acid levels with SLC2A9 rs11722228 among a Japanese population. Mol Genet Metab 103:378–382

    Article  PubMed  CAS  Google Scholar 

  10. Guan M, Zhou D, Ma W, Chen Y, Zhang J, Zou H (2011) Association of an intronic SNP of SLC2A9 gene with serum uric acid levels in the Chinese male Han population by high-resolution melting method. Clin Rheumatol 30:29–35

    Article  PubMed  Google Scholar 

  11. Brandstätter A, Lamina C, Kiechl S, Hunt SC, Coassin S, Paulweber B, Kramer F, Summerer M, Willeit J, Kedenko L, Adams TD, Kronenberg F (2010) Sex and age interaction with genetic association of atherogenic uric acid concentrations. Atherosclerosis 210:474–478

    Article  PubMed  Google Scholar 

  12. Sull JW, Kim HJ, Yun JE, Kim G, Park EJ, Kim S, Lee HY, Jee SH (2009) Serum adiponectin is associated with family history of diabetes independently of obesity and insulin resistance in healthy Korean men and women. Eur J Endocrinol 160:39–43

    Article  PubMed  CAS  Google Scholar 

  13. Yoon SJ, Lee HS, Lee SW et al (2008) The association between adiponectin and diabetes in the Korean population. Metabolism 57:853–857

    Article  PubMed  CAS  Google Scholar 

  14. Jee SH, Sull JW, Lee JE et al (2010) Adiponectin concentrations: a genome-wide association study. Am J Hum Genet 87:545–552

    Article  PubMed  CAS  Google Scholar 

  15. Hui L, DelMonte T, Ranade K (2008) Genotyping using the TaqMan assay. Curr Protoc Hum Genet Chapter 2:Unit 2.10

    Google Scholar 

  16. Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Heterogeneity in meta-analyses of genome-wide association investigations. PLoS. One2:e841

  17. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  18. Döring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, Fischer G, Henke K, Klopp N, Kronenberg F, Paulweber B, Pfeufer A, Rosskopf D, Völzke H, Illig T, Meitinger T, Wichmann HE, Meisinger C (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40:430–436

    Article  PubMed  Google Scholar 

  19. Vitart V, Rudan I, Hayward C et al (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40:437–442

    Article  PubMed  CAS  Google Scholar 

  20. Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N (2008) Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 83:744–751

    Article  PubMed  CAS  Google Scholar 

  21. Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, Metref S, Thorens B (2009) Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA 106:15501–15506

    Article  PubMed  CAS  Google Scholar 

  22. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183–1190

    Article  PubMed  CAS  Google Scholar 

  23. Deurenberg P, Yap M, van Staveren WA (1998) Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 22:1164–1171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Seoul City Research and Business Development Program (10526).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Ha Jee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sull, J.W., Park, E.J., Lee, M. et al. Effects of SLC2A9 variants on uric acid levels in a Korean population. Rheumatol Int 33, 19–23 (2013). https://doi.org/10.1007/s00296-011-2303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-011-2303-2

Keywords

Navigation