Skip to main content

Advertisement

Log in

HMG-CoA reductase inhibitor simvastatin suppresses Toll-like receptor 2 ligand-induced activation of nuclear factor kappa B by preventing RhoA activation in monocytes from rheumatoid arthritis patients

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

To investigate whether anti-inflammatory effects of HMG-CoA reductase inhibitor simvastatin (SMV) in rheumatoid arthritis (RA) is mediated by Toll-like receptor-2 (TLR-2) signal via inhibiting activation of RhoA, a small Rho GTPase that plays an important role in inflammatory responses. Peripheral blood monocytes from active RA patients were treated with Staphylococcus aureus peptidoglycan (PG), a ligand of TLR-2, in the presence or absence of SMV. RhoA activity was assessed by a pull-down assay. DNA-binding activity was measured by a sensitive multi-well colorimetric assay. Cytokine secretion was measured by ELISA. PG stimulation increased the level of active GTP-bound RhoA compared with unstimulated monocytes, and the effect of PG on RhoA activity was suppressed with anti-TLR-2 monoclonal antibody. RhoA inhibition either with a specific inhibitor or by siRNA transfection inhibited activation of NF-κB and secretion of TNFα and IL-1β in PG-induced RA monocytes. SMV mitigated PG-induced increase in RhoA activity and NF-κB activation as well as secretion of TNFα and IL-1β. The inhibitory effects of SMV were completely reversed by mevalonate and geranylgeranyl pyrophosphate. Our results indicate the modulation of RhoA on TLR-2-mediated inflammatory signaling in RA and provide a novel evidence for anti-inflammatory effects of statins through influencing TLR-2 signaling via RhoA in RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Szekanecz Z, Koch AE (2007) Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol 19:289–295

    Article  PubMed  Google Scholar 

  2. Burmester GR, Stuhlműller B, Keyszer G, Kinne RW (1997) Mononuclear phagocytes and rheumatoid synovitis: mastermind or workhorse? Arthritis Rheum 40:5–18

    Article  PubMed  CAS  Google Scholar 

  3. Andreakos E, Sacre S, Foxwell BM, Feldmann M (2005) The toll-like receptor-nuclear factor κB pathway in rheumatoid arthritis. Front Biosci 10:2478–2488

    Article  PubMed  CAS  Google Scholar 

  4. Brentano F, Kyburz D, Schorr O, Gay R, Gay S (2005) The role of Toll-like receptor signaling in the pathogenesis of arthritis. Cell Immunol 233:90–96

    Article  PubMed  CAS  Google Scholar 

  5. Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13:85–94

    Article  PubMed  CAS  Google Scholar 

  6. Iwahashi M, Yamamura M, Aita T, Okamato A, Ueno A, Ogawa N et al (2004) Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 50:1457–1467

    Article  PubMed  CAS  Google Scholar 

  7. Huang Q, Ma Y, Adedamola A, Pope RM (2007) Increased macrophage activation mediated through Toll-like receptors in rheumatoid arthritis. Arthritis Rheum 56:2192–2201

    Article  PubMed  CAS  Google Scholar 

  8. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–633

    Article  PubMed  CAS  Google Scholar 

  9. Han ZN, Boyle DL, Manning AM, Firestein GS (1998) AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28:197–208

    Article  PubMed  CAS  Google Scholar 

  10. Handel ML, McMorrow LB, Gravallese EM (1995) Nuclear factor κB in rheumatoid synovium: localization of p50 and p65. Arthritis Rheum 38:1762–1770

    Article  PubMed  CAS  Google Scholar 

  11. Seetharaman R, Mora AL, Nabozny G, Boothby M, Chen J (1999) Essential role of T cell NF-kappaB activation in collagen-induced arthritis. J Immunol 163:1577–1583

    PubMed  CAS  Google Scholar 

  12. Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimplson SA et al (1998) NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95:13859–13864

    Article  PubMed  CAS  Google Scholar 

  13. Tak PP, Gerlag DM, Aupperle KR, van de Geest DA, Overbeek M, Bennett BL et al (2001) Inhibitor of nuclear factor κB is a key regulator of synovial inflammation. Arthritis Rheum 44:1897–1907

    Article  PubMed  CAS  Google Scholar 

  14. Hammaker D, Sweeney S, Firestein GS (2003) Signal transduction networks in rheumatoid arthritis. Ann Rheum Dis 62:1186–1189

    Article  Google Scholar 

  15. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  16. Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10

    Article  PubMed  CAS  Google Scholar 

  17. Tharaux PL, Bukoski RC, Rocha PN, Crowley SD, Ruiz P, Nataraj C et al (2003) Rho kinase promotes alloimmune responses by regulating the proliferation and structure of T cells. J Immunol 171:96–105

    PubMed  CAS  Google Scholar 

  18. Lee JR, Ha YJ, Kim HJ (2003) Cutting edge: induced expression of a RhoA-specific guanine nucleotide exchange factor, p190RhoGEF, following CD40 stimulation and WEHI 231 B cell activation. J Immunol 170:19–23

    PubMed  CAS  Google Scholar 

  19. Perona R, Montaner S, Sangier L, Sanchez-Perez L, Bravo R, Lacal K (1997) Activation of the nuclear factor-kappa B by Rho, Cdc42, and Rac proteins. Genes Dev 11:463–475

    Article  PubMed  CAS  Google Scholar 

  20. Xu H, Liu P, Liang L, Danesh FR, Yang Y, Ye Y et al (2006) RhoA-mediated, tumor necrosis factor α-induced activation of NF-κB in rheumatoid synoviocytes: inhibitory effect of simvastatin. Arthritis Rheum 54:3441–3451

    Article  PubMed  CAS  Google Scholar 

  21. Nakayamada S, Kurose H, Saito K, Mogami A, Tanaka Y (2005) Small GTP-binding protein Rho-mediated signaling promotes proliferation of rheumatoid synovial fibroblasts. Arthritis Res Ther 7:R476–R484

    Article  PubMed  CAS  Google Scholar 

  22. SchÖnbeck U, Libby P (2004) Inflammation, immunity, and HMG-CoA reductase inhibitors statins as anti-inflammatory agents? Circulation 109 (Suppl II): II–18–26

  23. Ghittoni R, Lazzerini PE, Pasini FL, Baldari CT (2006) T lymphocytes as targets of statins: molecular mechanisms and therapeutic perspectives. Inflamm Allergy-Drug Targets 6:3–16

    Article  Google Scholar 

  24. Abud-Mendoza C, de la Fuente H, Cuevas-Orta E, Baranda L, Cruz-Rizo J, Gonzalez-Amaro R (2003) Therapy with statins in patients with refractory rheumatic diseases: a preliminary study. Lupus 12:607–611

    Article  PubMed  CAS  Google Scholar 

  25. McCarey DW, McInnes IB, Madhok R, Hampson R, Scherbakov O, Ford I et al (2004) Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet 363:2015–2021

    Article  PubMed  CAS  Google Scholar 

  26. Tikiz C, Utuk O, Pirildar T, Bayturan O, Bayindir P, Taneli F et al (2005) Effects of Angiotensin-converting enzyme inhibition and statin treatment on inflammatory markers and endothelial functions in patients with long term rheumatoid arthritis. J Rheumatol 32:2095–2110

    PubMed  CAS  Google Scholar 

  27. Leung BP, Sattar N, Crilly A, Prach M, McCarey DW, Payne H et al (2003) A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J Immunol 170:1524–1530

    PubMed  CAS  Google Scholar 

  28. Barsante MM, Roffe E, Yokoro CM, Tafuri WL, Souza DG, Pinho V et al (2005) Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur J Pharmacol 516:282–289

    Article  PubMed  CAS  Google Scholar 

  29. Casey PJ (1995) Protein lipidation in cell signaling. Science 268:221–225

    Article  PubMed  CAS  Google Scholar 

  30. Goldstein JL, Brown MS (1990) Regulation of mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  31. Scita G, Tenca P, Frittoli E (2000) Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J 19:2393–2398

    Article  PubMed  CAS  Google Scholar 

  32. Danesh FR, Sadeghi MM, Amro N, Philips C, Zeng L, Sahai A et al (2002) 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors prevent high glucose induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: implications for diabetic nephropathy. Proc Natl Acad Sci USA 99:8301–8305

    Article  PubMed  CAS  Google Scholar 

  33. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  34. Xu H, He Y, Yang Y, Liang L, Zhan Z, Ye Y et al (2007) Anti-malarial agent artesunate inhibits TNF-α-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 46:920–926

    Article  PubMed  CAS  Google Scholar 

  35. Renard P, Ernest I, Houbion A, Art M, Le Calvez H, Raes M et al (2001) Development of a sensitive multi-well colorimetric assay for active NF-kappaB. Nucl Acid Res 29:E21 nar.oxfordjournals.org

    Article  CAS  Google Scholar 

  36. Teusch N, Lombardo E, Eddleston J, Knaus UG (2004) The low molecular weight GTPase RhoA and atypical protein kinase Cζ are required for TLR2-mediated gene transcription. J Immunol 173:507–514

    PubMed  CAS  Google Scholar 

  37. Manukyan M, Nalbant P, Luxen S, Hahn KM, Knaus UG (2009) RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-kappa B. J Immunol 182:3522–3529

    Article  PubMed  CAS  Google Scholar 

  38. Nagashima T, Okazaki H, Yudoh K, Matsuno H, Minota S (2006) Apoptosis of rheumatoid synovial cells by statins through the blocking of protein geranylgeranylation: a potential therapeutic approach to rheumatoid arthritis. Arthritis Rheum 54:579–586

    Article  PubMed  CAS  Google Scholar 

  39. Methe H, Kim JO, Kofler S, Nabauer M, Weis M (2005) Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14 + monocytes. Arterioscler Thromb Vasc Biol 25:1439–1445

    Article  PubMed  CAS  Google Scholar 

  40. Blanco-Colio ML, Tuňón J, Martín-Ventura JL, Egido J (2003) Anti-inflammatory and immunomodulatory effects of statins. Kidney Int 63:12–23

    Article  PubMed  CAS  Google Scholar 

  41. Van Aelst L, D’souza-Schorey C (1997) Rho GTPase and signaling networks. Genes Dev 11:2295–2322

    Article  PubMed  Google Scholar 

  42. Xu H, Zeng L, Hui P, Chen S, Jones J, Chew TL et al (2006) HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced “inside-out” signaling to extracellular matrix by preventing RhoA activation. Am J Physiol Renal Physiol 291:F995–F1004

    Article  PubMed  CAS  Google Scholar 

  43. Zeng L, Xu H, Chew T-L, Chisholm R, Sadeghi MM, Kanwar YS et al (2004) Simvastatin modulates angiotensin II signaling pathway by preventing Rac-1-mediated upregulation of p27. J Am Soc Nephrol 15:1711–1720

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from National Natural Science Foundation of China (No. u0772001), Guangdong Natural Science Foundation (No. 07001643) and Excellent Talent Program of the First Hospital, Sun Yat-sen University, China.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanshi Xu.

Additional information

H. Lin, Y. Xiao and G. Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Xiao, Y., Chen, G. et al. HMG-CoA reductase inhibitor simvastatin suppresses Toll-like receptor 2 ligand-induced activation of nuclear factor kappa B by preventing RhoA activation in monocytes from rheumatoid arthritis patients. Rheumatol Int 31, 1451–1458 (2011). https://doi.org/10.1007/s00296-010-1510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1510-6

Keywords

Navigation