Skip to main content
Log in

Identification of ligands for bacterial sensor proteins

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anantharaman V, Aravind L (2000) Cache: a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci 25:535–537

    Article  CAS  PubMed  Google Scholar 

  • Bordeleau E, Burrus V (2015) Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile. Curr Genet 61:497–502

    Article  CAS  PubMed  Google Scholar 

  • Brandts JF, Lin LN (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29:6927–6940

    Article  CAS  PubMed  Google Scholar 

  • Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallid Sci 3:39–59

    Article  CAS  Google Scholar 

  • Fernandez M, Morel B, Corral-Lugo A, Krell T (2015) Identification of a chemoreceptor that specifically mediates chemotaxis towards metabolizable purine derivatives. Mol Microbiol (in press)

  • Garcia V, Reyes-Darias JA, Martin-Mora D, Morel B, Matilla MA, Krell T (2015) Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol 81:5449–5457

    Article  CAS  PubMed  Google Scholar 

  • Glekas GD, Mulhern BJ, Kroc A, Duelfer KA, Lei V, Rao CV, Ordal GW (2012) The Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanisms. J Biol Chem 287:39412–39418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goers Sweeney E, Henderson JN, Goers J, Wreden C, Hicks KG, Foster JK, Parthasarathy R, Remington SJ, Guillemin K (2012) Structure and proposed mechanism for the pH-sensing Helicobacter pylori chemoreceptor TlpB. Structure 20:1177–1188

    Article  CAS  PubMed  Google Scholar 

  • Lacal J, Alfonso C, Liu X, Parales RE, Morel B, Conejero-Lara F, Rivas G, Duque E, Ramos JL, Krell T (2010) Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem 285:23126–23136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laub MT, Goulian M (2007) Specificity in two-component signal transduction pathways. Annu Rev Genet 41:121–145

    Article  CAS  PubMed  Google Scholar 

  • Martín-Mora D, Reyes-Darias JA, Ortega A, Corral-Lugo A, Matilla MA, Krell T (2015) McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ Microbiol (in press)

  • Mascher T (2013) Signaling diversity and evolution of extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 16:148–155

    Article  CAS  PubMed  Google Scholar 

  • McKellar JL, Minnell JJ, Gerth ML (2015) A high-throughput screen for ligand binding reveals the specificities of three amino acid chemoreceptors from Pseudomonas syringae pv. actinidiae. Mol Microbiol 96:694–707

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13:1666–1681

    Article  CAS  PubMed  Google Scholar 

  • Milburn MV, Prive GG, Milligan DL, Scott WG, Yeh J, Jancarik J, Koshland DE Jr, Kim SH (1991) Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254:1342–1347

    Article  CAS  PubMed  Google Scholar 

  • Milligan DL, Koshland DE Jr (1993) Purification and characterization of the periplasmic domain of the aspartate chemoreceptor. J Biol Chem 268:19991–19997

    CAS  PubMed  Google Scholar 

  • Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  • Ortega A, Krell T (2014) The HBM domain: introducing bimodularity to bacterial sensing. Protein Sci 23:332–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pineda-Molina E, Reyes-Darias JA, Lacal J, Ramos JL, Garcia-Ruiz JM, Gavira JA, Krell T (2012) Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites. Proc Natl Acad Sci USA 109:18926–18931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reyes-Darias JA, Garcia V, Rico-Jimenez M, Corral-Lugo A, Lesouhaitier O, Juarez-Hernandez D, Yang Y, Bi S, Feuilloley M, Munoz-Rojas J, Sourjik V, Krell T (2015a) Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle. Mol Microbiol 97:488–501

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Darias JA, Yang Y, Sourjik V, Krell T (2015b) Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa. Mol Microbiol 96:513–525

    Article  CAS  PubMed  Google Scholar 

  • Rico-Jimenez M, Munoz-Martinez F, Garcia-Fontana C, Fernandez M, Morel B, Ortega A, Ramos JL, Krell T (2013) Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol Microbiol 88:1230–1243

    Article  CAS  PubMed  Google Scholar 

  • Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Santamaria-Hernando S, Krell T, Ramos-Gonzalez MI (2012) Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins. PLoS One 7:e40698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taguchi K, Fukutomi H, Kuroda A, Kato J, Ohtake H (1997) Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 143(Pt 10):3223–3229

    Article  CAS  PubMed  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulrich LE, Zhulin IB (2005) Four-helix bundle: a ubiquitous sensory module in prokaryotic signal transduction. Bioinformatics 21(Suppl 3):iii45–iii48

    Article  CAS  PubMed  Google Scholar 

  • Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50

    PubMed Central  PubMed  Google Scholar 

  • Yeh JI, Biemann HP, Prive GG, Pandit J, Koshland DE Jr, Kim SH (1996) High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor. J Mol Biol 262:186–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hendrickson WA (2010) Structural characterization of the predominant family of histidine kinase sensor domains. J Mol Biol 400:335–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhulin IB, Nikolskaya AN, Galperin MY (2003) Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J Bacteriol 185:285–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from FEDER funds and Fondo Social Europeo through Grants from the Junta de Andalucía (Grant CVI-7335) and the Spanish Ministry for Economy and Competitiveness (Grants BIO2013-42297 and RTC-2014-1777-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Krell.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M., Morel, B., Corral-Lugo, A. et al. Identification of ligands for bacterial sensor proteins. Curr Genet 62, 143–147 (2016). https://doi.org/10.1007/s00294-015-0528-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0528-4

Keywords

Navigation