Skip to main content
Log in

Biological roles of fungal carotenoids

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aasen AJ, Jensen SL (1965) Fungal carotenoids II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand 19:1843–1853

    CAS  PubMed  Google Scholar 

  • Ádám AL, García-Martínez J, Szücs EP, Avalos J, Hornok L (2011) The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides. FEMS Microbiol Lett 318:76–83

    PubMed  Google Scholar 

  • Alcaíno J, Barahona S, Carmona M, Lozano C, Marcoleta A, Niklitschek M, Sepúlveda D, Baeza M, Cifuentes V (2008) Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 8:169

    PubMed  PubMed Central  Google Scholar 

  • Alcaíno J, Fuentealba M, Cabrera R, Baeza M, Cifuentes V (2012) Modeling the interfacial interactions between CrtS and CrtR from Xanthophyllomyces dendrorhous, a P450 system involved in astaxanthin production. J Agric Food Chem 60:8640–8647

    PubMed  Google Scholar 

  • Almeida ER, Cerdá-Olmedo E (2008) Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr Genet 53:129–137

    CAS  PubMed  Google Scholar 

  • Álvarez V, Rodríguez-Sáiz M, de la Fuente JL, Gudina EJ, Godio RP, Martín JF, Barredo JL (2006) The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol 43:261–272

    PubMed  Google Scholar 

  • Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152

    PubMed  PubMed Central  Google Scholar 

  • An GH, Johnson EA (1990) Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie Van Leeuwenhoek 57:191–203

    CAS  PubMed  Google Scholar 

  • An GH, Cho MH, Johnson EA (1999) Monocyclic carotenoid biosynthetic pathway in the yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous). J Biosci Bioeng 88:189–193

    CAS  PubMed  Google Scholar 

  • Arcangeli C, Cannistraro S (2000) In situ Raman microspectroscopic identification and localization of carotenoids: approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biopolymers 57:179–186

    CAS  PubMed  Google Scholar 

  • Armstrong GA, Hearst JE (1996) Carotenoids 2: genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 10:228–237

    CAS  PubMed  Google Scholar 

  • Arpin N, Liaaen-Jensen S (1967) Chemotaxonomic research on fungi. Fungal carotenoids IV. Carotenoids of Phillipsia carminea (Pat.) Le Gal; isolation and identification of a new natural xanthophyll. Bull Soc Chim Biol 49:527–536

    CAS  PubMed  Google Scholar 

  • Arpin N, Lebreton P, Fiasson JL (1966) Chemotaxonomic research on fungi II. Carotenoids of Peniophora aurantiaca (Bres.) (Basidiomycete). Bull Soc Mycol Fr 82:450–459

    Google Scholar 

  • Arrach N, Fernández-Martín R, Cerdá-Olmedo E, Avalos J (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci USA 98:1687–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin DG, Bu’Lock JD, Winstanley DJ (1969) Trisporic acid biosynthesis and carotenogenesis in Blakesleea trispora. Biochem J 113:34P

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin DJ, Bu’Lock JD, Drake D (1970) The biosynthesis of trisporic acids from β-carotene via retinal and trisporol. Experientia 26:348–349

    CAS  PubMed  Google Scholar 

  • Avalos J, Cerdá-Olmedo E (1986) Chemical modification of carotenogenesis in Gibberella fujikuroi. Phytochemistry 25:1837–1841

    CAS  Google Scholar 

  • Avalos J, Cerdá-Olmedo E (1987) Carotenoid mutants of Gibberella fujikuroi. Curr Genet 25:1837–1841

    Google Scholar 

  • Avalos J, Cerdá-Olmedo E (2004) Fungal carotenoid production. In: Arora DK (ed) Handbook of fungal biotechnology. Marcel Dekker, New York, pp 367–378

    Google Scholar 

  • Avalos J, Corrochano LM (2013) Carotenoid biosynthesis in Neurospora. In: Kasbekar DP, McCluskey K (eds) Neurospora: genomics and molecular biology. Caister Academic Press, Norfolk, pp 227–241

    Google Scholar 

  • Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938

    CAS  PubMed  Google Scholar 

  • Avalos J, Bejarano ER, Cerdá-Olmedo E (1993) Photoinduction of carotenoid biosynthesis. Methods Enzymol 214:283–294

    CAS  Google Scholar 

  • Avalos J, Díaz-Sánchez V, García-Martínez J, Castrillo M, Ruger-Herreros M, Limón MC (2014) Carotenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 149–185

    Google Scholar 

  • Barrero AF, Herrador MM, Arteaga P, Gil J, González JA, Alcalde E, Cerdá-Olmedo E (2011) New apocarotenoids and β-carotene cleavage in Blakeslea trispora. Org Biomol Chem 9:7190–7195

    CAS  PubMed  Google Scholar 

  • Bejarano ER, Govind NS, Cerdá-Olmedo E (1987) ξ-carotene and other carotenes in a Phycomyces mutant. Phytochemistry 26:2251–2254

    CAS  Google Scholar 

  • Bejarano ER, Avalos J, Lipson ED, Cerdá-Olmedo E (1991) Photoinduced accumulation of carotene in Phycomyces. Planta 183:1–9

    CAS  PubMed  Google Scholar 

  • Bergman K, Eslava AP, Cerdá-Olmedo E (1973) Mutants of Phycomyces with abnormal phototropism. Mol Gen Genet 123:1–16

    CAS  PubMed  Google Scholar 

  • Bertrand M (2010) Carotenoid biosynthesis in diatoms. Photosynth Res 106:89–102

    CAS  PubMed  Google Scholar 

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    CAS  PubMed  Google Scholar 

  • Bhosale PB, Gadre RV (2001) Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol 55:423–427

    CAS  PubMed  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999a) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA 96:8034–8039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL (1999b) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138–14145

    CAS  PubMed  Google Scholar 

  • Bindl E, Lang W, Rau W (1970) Untersuchungen über die lichtabhängige Carotinoidsynthese VI. Zeitlicher Verlauf der Synthese der einzelnen Carotinoide bei Fusarium aquaeductuum unter verschiedenen Induktionsbedingungen. Planta 94:156–174

    CAS  PubMed  Google Scholar 

  • Blakeslee AF (1904) Sexual reproduction in the Mucorineae. Proc Am Acad Arts Sci 40:205–319

    Google Scholar 

  • Blanc PL, Tuveson RW, Sargent ML (1976) Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation. J Bacteriol 125:616–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco JL, Roessink D, Iturriaga EA, Eslava AP, Galland P (2001) Photocarotenogenesis in Phycomyces: expression of the carB gene encoding phytoene dehydrogenase. J Plant Res 114:25–31

    CAS  Google Scholar 

  • Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630

    CAS  PubMed  Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    CAS  PubMed  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1998) Carotenoids. Birkhäuser Verlag, Basel, pp 359–371

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids: Handbook Birkhauser Springer, Boston

  • Brooks J, Shaw G (1968) Chemical structure of the exine of pollen walls and a new function for carotenoids in nature. Nature 219:532–533

    CAS  PubMed  Google Scholar 

  • Brown LS (2004) Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565

    CAS  PubMed  Google Scholar 

  • Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL (2001) Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem 276:32495–32505

    CAS  PubMed  Google Scholar 

  • Burmester A, Richter M, Schultze K, Voelz K, Schachtschabel D, Boland W, Wöstemeyer J, Schimek C (2007) Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genet Biol 44:1096–1108

    CAS  PubMed  Google Scholar 

  • Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N (2007) Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol 53:1024–1031

    CAS  PubMed  Google Scholar 

  • Caglioti L, Cainelli G, Camerino B, Mondelli R, Prieto A, Quilico A, Salvatori T, Selva A (1966) The structure of trisporic-C acid. Tetrahedron 22:175–187

    Google Scholar 

  • Cerdá-Olmedo E (1987) Carotene. In: Cerdá-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 199–222

    Google Scholar 

  • Chen SJ, Wang Q, Han JR (2010) Influence of oxidative stress and grains on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. J Basic Microbiol 50:388–391

    CAS  PubMed  Google Scholar 

  • Czempinski K, Kruft V, Wöstemeyer J, Burmester A (1996) 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene. Microbiology 142:2647–2654

    CAS  PubMed  Google Scholar 

  • Daub ME, Payne GA (1989) The role of carotenoids in resistance of fungi to cercosporin. Phytopathology 79:180–185

    CAS  Google Scholar 

  • Davoli P, Mierau V, Weber RWS (2004) Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol 40:392–397

    CAS  Google Scholar 

  • de Fabo EC, Harding RW, Shropshire W Jr (1976) Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant Physiol 57:440–445

    PubMed  PubMed Central  Google Scholar 

  • de Miguel T, Calo P, Díaz A, Villa TG (1997) The genus Rhodosporidium: a potential source of β-carotene. Microbiologia 13:67–70

    PubMed  Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    CAS  PubMed  Google Scholar 

  • Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J (2011) The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J 278:3164–3176

    PubMed  Google Scholar 

  • Díaz-Sánchez V, Estrada AF, Limón MC, Al-Babili S, Avalos J (2013) The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme. Eukaryot Cell 12:1305–1314

    PubMed  PubMed Central  Google Scholar 

  • Domínguez-Bocanegra AR, Ponce-Noyola T, Torres-Muñoz JA (2007) Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study. Appl Microbiol Biotechnol 75:783–791

    PubMed  Google Scholar 

  • Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    CAS  PubMed  Google Scholar 

  • Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants—a review. J Photochem Photobiol B 41:189–200

    CAS  PubMed  Google Scholar 

  • El-Jack M, Mackenzie A, Bramley PM (1988) The photoregulation of carotenoid biosynthesis in Aspergillus giganteus mut. alba. Planta 174:59–66

    CAS  PubMed  Google Scholar 

  • Estrada AF, Avalos J (2008) The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol 45:705–718

    CAS  PubMed  Google Scholar 

  • Estrada AF, Avalos J (2009) Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J Mol Biol 387:59–73

    CAS  PubMed  Google Scholar 

  • Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J (2008) The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol 69:1207–1220

    CAS  PubMed  Google Scholar 

  • Estrada AF, Brefort T, Mengel C, Díaz-Sánchez V, Alder A, Al-Babili S, Avalos J (2010) Ustilago maydis accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenase. Fungal Genet Biol 46:803–813

    Google Scholar 

  • Fernández-Martín R, Cerdá-Olmedo E, Avalos J (2000) Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Mol Gen Genet 263:838–845

    PubMed  Google Scholar 

  • Frank HA, Brudvig GW (2004) Redox functions of carotenoids in photosynthesis. Biochemistry 43:8607–8615

    CAS  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    CAS  PubMed  Google Scholar 

  • Fraser PD, Ruiz-Hidalgo MJ, López-Matas MA, Álvarez MI, Eslava AP, Bramley PM (1996) Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta 1289:203–208

    PubMed  Google Scholar 

  • Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135

    CAS  PubMed  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    CAS  PubMed  Google Scholar 

  • Furch B, Gooday GW (1978) Sporopollenin in Phycomyces blakesleeanus. Trans Br Mycol Soc 70:307–309

    CAS  Google Scholar 

  • Geis PA, Szaniszlo PJ (1984) Carotenoid pigments of the dematiaceous fungus Wangiella dermatitidis. Mycologia 76:268–273

    CAS  Google Scholar 

  • Georgiou CD, Tairis N, Polycratis A (2001a) Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycol Res 105:1110–1115

    CAS  Google Scholar 

  • Georgiou CD, Zervoudakis G, Tairis N, Kornaros M (2001b) β-carotene production and its role in sclerotial differentiation of Sclerotium rolfsii. Fungal Genet Biol 34:11–20

    CAS  PubMed  Google Scholar 

  • Giuliano G, Al-Babili S, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149

    CAS  PubMed  Google Scholar 

  • Gooday GW (1974) Sporopollenin formation in the ascospore wall of Neurospora crassa. Arch Microbiol 101:145–151

    CAS  PubMed  Google Scholar 

  • Gooday GW, Fawcett P, Green D, Shaw G (1973) The formation of fungal sporopollenin in the zygospore wall of Mucor mucedo: a role for the sexual carotenogenesis in the Mucorales. J Gen Microbiol 74:233–239

    CAS  Google Scholar 

  • Govind NS, Cerdá-Olmedo E (1986) Sexual activation of carotenogenesis in Phycomyces blakesleeanus. J Gen Microbiol 132:2775–2780

    CAS  Google Scholar 

  • Han JS (1992) Effects of various chemical compounds on spontaneous and hydrogen peroxide-induced reversion in strain TA104 of Salmonella typhimurium. Mutat Res 266:77–84

    CAS  PubMed  Google Scholar 

  • Han JR, Zhao WJ, Gao YY, Yuan JM (2005) Effect of oxidative stress and exogenous β-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Lett Appl Microbiol 40:412–417

    CAS  PubMed  Google Scholar 

  • Han M, He Q, Zhang WG (2012) Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem Biotechnol 42:293–303

    CAS  PubMed  Google Scholar 

  • Harding RW, Turner RV (1981) Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol 68:745–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harding RW, Huang PC, Mitchell HK (1969) Photochemical studies of the carotenoid biosynthetic pathway in Neurospora crassa. Arch Biochem Biophys 129:696–707

    CAS  PubMed  Google Scholar 

  • Haxo F (1949) Studies on the carotenoid pigments of Neurospora; composition of the pigment. Arch Biochem 20:400–421

    CAS  PubMed  Google Scholar 

  • Haxo F (1950) Carotenoids of the mushroom Cantharellus cinnabarinus. Bot Gaz 112:228–232

    CAS  Google Scholar 

  • He Q, Liu Y (2005) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heisenberg M, Cerdá-Olmedo E (1968) Segregation of heterokaryons in the asexual cycle of Phycomyces. Mol Gen Genet 102:187–195

    CAS  PubMed  Google Scholar 

  • Herz S, Weber RW, Anke H, Mucci A, Davoli P (2007) Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochemistry 68:2503–2511

    CAS  PubMed  Google Scholar 

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    CAS  PubMed  Google Scholar 

  • Hu X, Ma X, Tang P, Yuan Q (2013) Improved β-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin. Biotechnol Lett 35:559–563

    CAS  PubMed  Google Scholar 

  • Idnurm A, Howlett BJ (2001) Characterization of an opsin gene from the ascomycete Leptosphaeria maculans. Genome 44:167–171

    CAS  PubMed  Google Scholar 

  • Idnurm A, Rodríguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP, Heitman J (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci USA 103:4546–4551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iigusa H, Yoshida Y, Hasunuma K (2005) Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Lett 579:4012–4016

    CAS  PubMed  Google Scholar 

  • Iurkov AM, Vustin MM, Tiaglov BV, Maksimova IA, Sineokiĭ SP (2008) Pigmented basidiomycete yeasts are a promising source of carotenoids and ubiquinone Q10. Mikrobiologiia 77:5–10

    CAS  PubMed  Google Scholar 

  • Jeong JC, Lee IY, Kim SW, Park YH (1999) Stimulation of β-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotech Lett 21:683–686

    CAS  Google Scholar 

  • Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174

    CAS  PubMed  Google Scholar 

  • Johnson EA, Lewis MJ (1979) Astaxanthin formation by the yeast Phaffia rhodozyma. J Gen Microbiol 115:173–183

    CAS  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516

    CAS  PubMed  Google Scholar 

  • Lang-Feulner J, Rau W (1975) Redox dyes as artificial photoreceptors in light-dependent carotenoid synthesis. Photochem Photobiol 21:179–183

    CAS  PubMed  Google Scholar 

  • Linnemannstöns P, Prado MM, Fernández-Martín R, Tudzynski B, Avalos J (2002) A carotenoid biosynthesis gene cluster in Fusarium fujikuroi: the genes carB and carRA. Mol Genet Genomics 267:593–602

    PubMed  Google Scholar 

  • Liu YS, Wu JY (2006) Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 73:663–668

    CAS  PubMed  Google Scholar 

  • Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, Tagua VG, Corrochano LM (2012) A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One 7:e33658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madhour A, Anke H, Mucci A, Davoli P, Weber RWS (2005) Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry 66:2617–2626

    CAS  PubMed  Google Scholar 

  • Martín-Rojas V (1994) Efectos de la radiación ultravioleta y funciones de los carotenos en Phycomyces. PhD Thesis. University of Seville

  • Martín-Rojas V, Gómez-Puerto A, Cerdá-Olmedo E (1996) Lack of protection by carotenes against gamma-radiation damage in Phycomyces. Radiat Environ Biophys 35:193–197

    PubMed  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medina HR, Cerdá-Olmedo E, Al-Babili S (2011) Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol 82:199–208

    CAS  PubMed  Google Scholar 

  • Mehta BJ, Obraztsova IN, Cerdá-Olmedo E (2003) Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Appl Environ Microbiol 69:4043–4048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michán S, Lledías F, Hansberg W (2003) Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryot Cell 2:798–808

    PubMed  PubMed Central  Google Scholar 

  • Mitzka U, Rau W (1977) Composition and photoinduced biosynthesis of the carotenoids of a protoplast-like Neurospora crassa “slime” mutant. Arch Microbiol 111:261–263

    CAS  PubMed  Google Scholar 

  • Moliné M, Libkind D, Diéguez MC, van Broock M (2009) Photoprotective role of carotenoids in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photochem Photobiol B 95:156–161

    PubMed  Google Scholar 

  • Moliné M, Flores MR, Libkind D, Diéguez MC, Farías ME, van Broock M (2010) Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151

    PubMed  Google Scholar 

  • Moliné M, Libkind D, van Broock M (2012) Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts. Methods Mol Biol 898:275–283

    PubMed  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    CAS  PubMed  Google Scholar 

  • Morris SA, Subden RE (1974) Effects of ultraviolet radiation on carotenoid-containing and albino strains of Neurospora crassa. Mutat Res 22:105–109

    CAS  PubMed  Google Scholar 

  • Murillo FJ, Cerdá-Olmedo E (1976) Regulation of carotene synthesis in Phycomyces. Mol Gen Genet 148:19–24

    CAS  PubMed  Google Scholar 

  • Murillo FJ, Calderón IL, López-Díaz I, Cerdá-Olmedo E (1978) Carotene-superproducing strains of Phycomyces. Appl Environ Microbiol 36:639–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanou K, Roukas T (2010) Oxidative stress response and morphological changes of Blakeslea trispora induced by butylated hydroxytoluene during carotene production. Appl Biochem Biotechnol 160:2415–2423

    CAS  PubMed  Google Scholar 

  • Nanou K, Roukas T (2011) Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Bioresour Technol 102:8159–8164

    CAS  PubMed  Google Scholar 

  • Nanou K, Roukas T (2013) Oxidative stress response of Blakeslea trispora induced by iron ions during carotene production in shake flask culture. Appl Biochem Biotechnol 169:2281–2289

    CAS  PubMed  Google Scholar 

  • Navarro E, Sandmann G, Torres-Martínez S (1995) Mutants of the carotenoid biosynthetic pathway of Mucor circinelloides. Exp Mycol 19:186–190

    CAS  Google Scholar 

  • Navarro-Sampedro L, Yanofsky C, Corrochano LM (2008) A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics 178:171–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K, Hoshino T, van den Berg J, Sandmann G (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase. Mol Genet Genomics 275:148–158

    CAS  PubMed  Google Scholar 

  • Oshima S, Ojima F, Sakamoto H, Ishiguro Y, Terao J (1993) Inhibitory effect of β-carotene and astaxanthin on photosensitized oxidation of phospholipid bilayers. J Nutr Sci Vitaminol 39:607–615

    CAS  PubMed  Google Scholar 

  • Palozza P, Krinsky NI (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 297:291–295

    CAS  PubMed  Google Scholar 

  • Papp T, Csernetics A, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C (2013) Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97:4937–4950

    CAS  PubMed  Google Scholar 

  • Pérez-Gálvez A, Negro-Balmaseda JJ, Mínguez-Mosquera MI, Cascajo-Almenara MV, Garrido-Fernández J (2008) Astaxanthin from crayfish (Procambarus clarkii) as a pigmentary ingredient in the feed of laying hens. Grasas Aceites 59:139–145

    Google Scholar 

  • Polaino S (2009) Apocarotenoides en la interacción sexual de Phycomyces, PhD Thesis. University of Seville

  • Polaino S, Herrador MM, Cerdá-Olmedo E, Barrero AF (2010) Splitting of β-carotene in the sexual interaction of Phycomyces. Org Biomol Chem 8:4229–4231

    CAS  PubMed  Google Scholar 

  • Polaino S, González-Delgado JA, Arteaga P, Herrador MM, Barrero AF, Cerdá-Olmedo E (2012) Apocarotenoids in the sexual interaction of Phycomyces blakesleeanus. Org Biomol Chem 10:3002–3009

    CAS  PubMed  Google Scholar 

  • Prado MM, Prado-Cabrero A, Fernández-Martín R, Avalos J (2004) A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr Genet 46:47–58

    CAS  PubMed  Google Scholar 

  • Prado-Cabrero A, Estrada AF, Al-Babili S, Avalos J (2007a) Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol 64:448–460

    CAS  PubMed  Google Scholar 

  • Prado-Cabrero A, Scherzinger D, Avalos J, Al-Babili S (2007b) Retinal biosynthesis in fungi: Characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukaryot Cell 6:650–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prado-Cabrero A, Schaub P, Díaz-Sánchez V, Estrada AF, Al-Babili S, Avalos J (2009) Deviation of the neurosporaxanthin pathway towards β-carotene biosynthesis in Fusarium fujikuroi by a point mutation in the phytoene desaturase gene. FEBS J 276:4582–4597

    CAS  PubMed  Google Scholar 

  • Quiles-Rosillo MD, Ruiz-Vázquez RM, Torres-Martínez S, Garre V (2005) Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genet Biol 42:141–153

    CAS  PubMed  Google Scholar 

  • Ramadan-Talib Z, Prebble J (1978) Photosensitivity of respiration in Neurospora mitochondria. A protective role for carotenoid. Biochem J 176:767–775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    CAS  PubMed  Google Scholar 

  • Rau W (1967) Untersuchungen über die lichtabhängige Carotinoidsynthese I. Das Wirkungsspektrum von Fusarium aquaeductuum. Planta 72:14–28

    CAS  Google Scholar 

  • Rodríguez-Ortiz R, Michielse C, Rep M, Limón MC, Avalos J (2012) Genetic basis of carotenoid overproduction in Fusarium oxysporum. Fungal Genet Biol 49:684–696

    PubMed  Google Scholar 

  • Rodríguez-Saiz M, Paz B, De La Fuente JL, López-Nieto MJ, Cabri W, Barredo JL (2004) Blakeslea trispora genes for carotene biosynthesis. Appl Environ Microbiol 70:5589–5594

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658

    PubMed  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 15:517–524

    Google Scholar 

  • Ruban AV, Johnson MP (2010) Xanthophylls as modulators of membrane protein function. Arch Biochem Biophys 504:78–85

    CAS  PubMed  Google Scholar 

  • Ruiz-Hidalgo MJ, Benito EP, Sandmann G, Eslava AP (1997) The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol Gen Genet 253:734–744

    CAS  PubMed  Google Scholar 

  • Ruiz-Roldán MC, Garre V, Guarro J, Mariné M, Roncero MI (2008) Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell 7:1227–1230

    PubMed  PubMed Central  Google Scholar 

  • Saelices L, Youssar L, Holdermann I, Al-Babili S, Avalos J (2007) Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics 278:527–537

    CAS  PubMed  Google Scholar 

  • Sahadevan Y, Richter-Fecken M, Kaerger K, Voigt K, Boland W (2013) Early and late trisporoids differentially regulate β-carotene production and gene transcript levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo. Appl Environ Microbiol 79:7466–7475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaki H, Nakanishi T, Satonaka K, Miki W, Fujita T, Komemushi S (2000) Properties of a high-torularhodin-producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205

    CAS  PubMed  Google Scholar 

  • Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S (2001) Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng 92:294–297

    CAS  PubMed  Google Scholar 

  • Sakaki H, Kaneno H, Sumiya Y, Tsushima M, Miki W, Kishimoto N, Fujita T, Matsumoto S, Komemushi S, Sawabe A (2002a) A new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1. J Nat Prod 65:1683–1684

    CAS  PubMed  Google Scholar 

  • Sakaki H, Nochide H, Komemushi S, Miki W (2002b) Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21. J Biosci Bioeng 93:338–340

    CAS  PubMed  Google Scholar 

  • Salgado LM, Avalos J, Bejarano ER, Cerdá-Olmedo E (1991) Correlation between in vivo and in vitro carotenogenesis in Phycomyces. Phytochemistry 30:2587–2591

    CAS  Google Scholar 

  • Sandmann G (1993) Photoregulation of carotenoid biosynthesis in mutants of Neurospora crassa: activities of enzymes involved in the synthesis and conversion of phytoene. Z Naturforsch 48c:570–574

    Google Scholar 

  • Sandmann G, Misawa N (2002) Fungal carotenoids. In: Osiewacz HD (ed) The Mycota X Industrial applications. Springer, Heidelberg, pp 247–262

    Google Scholar 

  • Sanz C, Rodríguez-Romero J, Idnurm A, Christie JM, Heitman J, Corrochano LM, Eslava AP (2009) Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci USA 106:7095–7100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saranak J, Foster KW (1997) Rhodopsin guides fungal phototaxis. Nature 387:465–466

    CAS  PubMed  Google Scholar 

  • Schimek C, Wöstemeyer J (2009) Carotene derivatives in sexual communication of zygomycete fungi. Phytochemistry 70:1867–1875

    CAS  PubMed  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Russo VE, Yanofsky C (1990) Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol 10:5064–5070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VE, Yanofsky C (1994) Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem 269:12060–12066

    CAS  PubMed  Google Scholar 

  • Schmidt AD, Heinekamp T, Matuschek M, Liebmann B, Bollschweiler C, Brakhage AA (2005) Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR. Appl Microbiol Biotechnol 67:549–555

    CAS  PubMed  Google Scholar 

  • Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    CAS  PubMed  Google Scholar 

  • Schroeder WA, Calo P, DeClercq ML, Johnson EA (1996) Selection for carotenogenesis in the yeast Phaffia rhodozyma by dark-generated singlet oxygen. Microbiology 142:2923–2929

    CAS  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RJ (1994) Pollen exine: the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead MA (eds) Molecular and cellular aspects of plant reproduction. Cambridge University Press, Cambridge, pp 49–81

    Google Scholar 

  • Shimizu M, Egashira T, Takahama U (1979) Inactivation of Neurospora crassa conidia by singlet molecular oxygen generated by a photosensitized reaction. J Bacteriol 138:293–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ (2001) vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol 32:169–181

    CAS  PubMed  Google Scholar 

  • Sieiro C, Poza M, de Miguel T, Villa TG (2003) Genetic basis of microbial carotenogenesis. Int Microbiol 6:11–16

    CAS  PubMed  Google Scholar 

  • Sies H, Stahl W (2004) Carotenoids and UV protection. Photochem Photobiol Sci 3:749–752

    CAS  PubMed  Google Scholar 

  • Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037

    CAS  PubMed  Google Scholar 

  • Skibsted LH (2012) Carotenoids in antioxidant networks. Colorants or radical scavengers. J Agric Food Chem 60:2409–2417

    CAS  PubMed  Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. Science 255:952–959

    CAS  PubMed  Google Scholar 

  • Gessler NN, Sokolov AV, Bykhovsky VY, Belozerskaya TA (2002) Superoxide dismutase and catalase activities in carotenoid-synthesizing fungi Blakeslea trispora and Neurospora crassa in oxidative stress. Appl Biochem Microbiol 38:205–209

    CAS  Google Scholar 

  • Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14:480–487

    CAS  PubMed  Google Scholar 

  • Spudich JL, Yang CS, Jung KH, Spudich EN (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    CAS  PubMed  Google Scholar 

  • Spurgeon SL, Turner RV, Harding RW (1979) Biosynthesis of phytoene from isopentenyl pyrophosphate by a Neurospora enzyme system. Arch Biochem Biophys 195:23–29

    CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Aspects Med 24:345–351

    CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107

    CAS  PubMed  Google Scholar 

  • Strobel I, Breitenbach J, Scheckhuber CQ, Osiewacz HD, Sandmann G (2009) Carotenoids and carotenogenic genes in Podospora anserina: engineering of the carotenoid composition extends the life span of the mycelium. Curr Genet 55:175–184

    CAS  PubMed  Google Scholar 

  • Sui X, Kiser PD, von Lintig J, Palczewski K (2013) Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 539:203–213

    CAS  PubMed  Google Scholar 

  • Sutter RP (1970) Effect of light on β-carotene accumulation in Blakeslea trispora. J Gen Microbiol 64:215–221

    CAS  PubMed  Google Scholar 

  • Sutter RP (1975) Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci USA 72:127–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutter RP, Dadok J, Bothner-By AA, Smith RR, Mishra PK (1989) Cultures of separated mating types of Blakeslea trispora make D and E forms of trisporic acids. Biochemistry 28:4060–4066

    CAS  PubMed  Google Scholar 

  • Tagua VG, Medina HR, Martín-Domínguez R, Eslava AP, Corrochano LM, Cerdá-Olmedo E, Idnurm A (2012) A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol 49:398–404

    CAS  PubMed  Google Scholar 

  • Telfer A (2005) Too much light? How β-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950–956

    CAS  PubMed  Google Scholar 

  • Terao J (1989) Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24:659–661

    CAS  PubMed  Google Scholar 

  • Thewes S, Prado-Cabrero A, Prado MM, Tudzynski B, Avalos J (2005) Characterization of a gene in the car cluster of Fusarium fujikuroi that codes for a protein of the carotenoid oxygenase family. Mol Genet Genomics 274:217–228

    CAS  PubMed  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N, Takagi H (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75:7205–7211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valadon LRG, Mummery RS (1969) Biosynthesis of neurosporaxanthin. Microbios 1A:3–8

    Google Scholar 

  • Valadon LRG, Mummery RS (1977) Natural β-apo-4′-carotenoic acid methyl ester in the fungus Verticillium agaricinum. Phytochemistry 16:613–614

    CAS  Google Scholar 

  • Valadon LRG, Osman M, Mummery RS, Jerebzoff-Quintin S, Jerebzoff S (1982) The effect of monochromatic radiation in the range 350 to 750 nm on the carotenogenesis in Verticillium agaricinum. Physiol Plant 56:199–203

    CAS  Google Scholar 

  • van Eijk GW, Mummery RS, Roeymans HJ, Valadon LR (1979) A comparative study of carotenoids of Aschersonia aleyroides and Aspergillus giganteus. Antonie Van Leeuwenhoek 45:417–422

    PubMed  Google Scholar 

  • Velayos A, López-Matas MA, Ruiz-Hidalgo MJ, Eslava AP (1997) Complementation analysis of carotenogenic mutants of Mucor circinelloides. Fungal Genet Biol 22:19–27

    CAS  PubMed  Google Scholar 

  • Velayos A, Blasco JL, Álvarez MI, Iturriaga EA, Eslava AP (2000a) Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210:938–946

    CAS  PubMed  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA (2000b) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519

    CAS  PubMed  Google Scholar 

  • Verdoes JC, Misawa N, van Ooyen AJJ (1999) Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioeng 63:750–755

    CAS  PubMed  Google Scholar 

  • Visser H, van Ooyen AJJ, Verdoes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4:221–231

    CAS  PubMed  Google Scholar 

  • Wang Y, Lin YC, So J, Du Y, Lo C (2013) Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. Physiol Plant 149:13–24

    CAS  PubMed  Google Scholar 

  • Waschuk SA, Bezerra AG Jr, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA 102:6879–6883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzel J, Scheibner O, Burmester A, Schimek C, Wöstemeyer J (2009) 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression. Eukaryot Cell 8:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Will OH, Ruddat M, Garber ED, Kezdy FJ (1984) Characterization of carotene accumulation in Ustilago violacea using high-performance liquid chromatography. Curr Microbiol 10:57–63

    CAS  Google Scholar 

  • Will OH, Ruddat M, Newland NA (1985) Characterization of carotene accumulation in species of the fungal genus Ustilago using high-performance liquid chromatography. Bot Gaz 146:204–207

    CAS  Google Scholar 

  • Wyss A (2004) Carotene oxygenases: a new family of double bond cleavage enzymes. J Nutr 134:246S–250S

    CAS  PubMed  Google Scholar 

  • Yang Q, Borkovich KA (1999) Mutational activation of a Gαi causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics 151:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Hasunuma K (2004) Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem 279:6986–6993

    CAS  PubMed  Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    CAS  PubMed  Google Scholar 

  • Youssar L, Schmidhauser TJ, Avalos J (2005) The Neurospora crassa gene responsible for the cut and ovc phenotypes encodes a protein of the haloacid dehalogenase family. Mol Microbiol 55:828–838

    CAS  PubMed  Google Scholar 

  • Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165

    CAS  PubMed  Google Scholar 

  • Zalokar M (1954) Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys 50:71–80

    CAS  PubMed  Google Scholar 

  • Zalokar M (1955) Biosynthesis of carotenoids in Neurospora. Action spectrum of photoactivation. Arch Biochem Biophys 56:318–325

    CAS  PubMed  Google Scholar 

  • Zalokar M (1957) Isolation of an acidic pigment in Neurospora. Arch Biochem Biophys 70:568–571

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank European Union (European Regional Development Funds), Spanish Government (Ministerio de Ciencia y Tecnología, projects BIO2006-01323, BIO2009-11131, and BIO2012-39716), and Andalusian Government (projects P07-CVI-02813 and CTS-6638), for funding our research. This review article was supported in part by a grant from São Paulo Research Foundation (FAPESP) of Brazil # 2014/01229-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Avalos.

Additional information

Communicated by D.E.N. Rangel.

This article is part of the Special Issue “Fungal Stress Responses”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avalos, J., Carmen Limón, M. Biological roles of fungal carotenoids. Curr Genet 61, 309–324 (2015). https://doi.org/10.1007/s00294-014-0454-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0454-x

Keywords

Navigation