Skip to main content
Log in

Loss of a 1.6 Mb chromosome in Pyricularia oryzae harboring two alleles of AvrPik leads to acquisition of virulence to rice cultivars containing resistance alleles at the Pik locus

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A small and extra chromosome of 1.6 Mb was previously identified in a Pyricularia oryzae strain, 84R-62B. To understand a role of the 1.6 Mb chromosome in the pathogenic changeability of P. oryzae, we performed experiments designed to characterize the 1.6 Mb chromosome in the present study. A gene family encoding secreted protein Pex31s in P. oryzae consists of five homologs, Pex31-A to -E. Among them, Pex31-A and -D are known to be recognized by Pik-m and Pik/Pik-m/Pik-p, respectively. In the present study, we identified Pex31-A and -D in the genome of 84R-62B. Segregation analyses using an F1 population between 84R-62B and another rice blast strain, Y93-245c-2, revealed a strong linkage between the two homologs and the 1.6 Mb chromosome of 84R-62B. A CHEF-Southern analysis revealed an association between the 1.6 Mb chromosome and the homologs, indicating that both homologs are located on the 1.6 Mb chromosome of 84R-62B. The loss of the 1.6 Mb chromosome was observed in subcultures of a F1 progeny, F1-327. These subcultures concomitantly acquired virulence on Pik, Pik-m, and Pik-p. The present study is the first report showing that loss of a small and extra chromosome leads to pathogenic mutation of P. oryzae and may provide a new insight into the mechanisms generating pathogenic variation of this fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–2513

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y (2011) Multiple translocation of the AVR-Pita Effector Gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7:e1002147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    Article  PubMed  CAS  Google Scholar 

  • Covert SF (1998) Supernumerary chromosomes in filamentous fungi. Curr Genet 33:311–319

    Article  PubMed  CAS  Google Scholar 

  • Farman ML (2007) Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it. FEMS Microbiol Lett 273:125–132

    Article  PubMed  CAS  Google Scholar 

  • Farman ML, Leong SA (1995) Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. Genetics 140:479–492

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternate. Genetics 161:59–70

    PubMed  CAS  PubMed Central  Google Scholar 

  • Itoi S, Mishima T, Arase S, Nozu M (1983) Mating behavior of Japanese isolates of Pyricularia oryzae. Phytopathology 73:155–158

    Article  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H, Kohmoto K, Kodama M (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40:65–72

    Article  PubMed  CAS  Google Scholar 

  • Jones RN (1995) B chromosomes in plants. New Phytol 131:411–434

    Article  Google Scholar 

  • Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72:894–907

    CAS  Google Scholar 

  • Kiyosawa S (1969) Inheritance of resistance of rice varieties to a philippine fungus strain of Pyricularia oryzae. Jpn J Breed 19:61–73

    Article  Google Scholar 

  • Kiyosawa S (1974) Studies on genetics and breeding of blast resistance in rice (in Japanese with English summary). Misc Pub Bull Natl Inst Agric Sci D 1:1–58

    Google Scholar 

  • Kiyosawa S (1978) Identification of blast-resistance genes in some rice varieties. Jpn J Breed 28:289–296

    Article  Google Scholar 

  • Kiyosawa S (1984) Establishment of differential varieties for pathogenicity test of rice blast. Rice Genet Newslett 1:95–96

    Google Scholar 

  • Kusaba M, Luo CX, Hanamura H, Misaka M, Mochida T, Fujita Y, Tosa Y (2008) An avirulence gene to rice cultivar K60 is located on the 1.6-Mb chromosome in Magnaporthe oryzae isolate 84R-62B. J Gen Plant Pathol 74:250–253

    Article  Google Scholar 

  • Leong SA (2008) The ins and outs of host recognition of Magnaporthe oryzae. In: Gufstason JP, Taylor J, Stacey G (eds) The genomics of disease. Springer, New York, pp 119–216

    Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420

    Article  PubMed  CAS  Google Scholar 

  • Luo CX, Hanamura H, Sezaki H, Kusaba M, Yaegashi H (2002) Relationship between avirulence genes of the same family in rice blast fungus Magnaporthe grisea. J Gen Plant Pathol 68:300–306

    Article  CAS  Google Scholar 

  • Luo CX, Fujita Y, Yasuda N, Hirayae K, Nakajima T, Hayashi N, Kusaba M, Yaegashi H (2004) Identification of Magnaporthe oryzae avirulence genes to three rice blast resistance genes. Plant Dis 88:265–270

    Article  CAS  Google Scholar 

  • Luo CX, Yin LF, Koyanagi S, Farman ML, Kusaba M, Yaegashi H (2005) Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence genes AvrPik, AvrPiz, and AvrPiz-t controlling cultivar specificity on rice. Phytopathology 95:640–647

    Article  PubMed  CAS  Google Scholar 

  • Luo CX, Yin LF, Ohtaka K, Kusaba M (2007) The 1.6-Mb chromosome carrying the avirulence gene AvrPik in Magnaporthe oryzae isolate 84R-62B is a chimera containing chromosome I sequences. Mycol Res 111:232–239

    Article  PubMed  CAS  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RA, Chapman S, Coulson R, Coutinho PM, Danchin EG, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M’barek S, Gohari AM, Jashni MK, Stergiopoulos I, Kema GH, de Wit PJ (2011) Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev 35:542–554

    Article  PubMed  CAS  Google Scholar 

  • Miao VP, Covert SF, VanEtten HD (1991) A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254:1773–1776

    Article  PubMed  CAS  Google Scholar 

  • Orbach MJ, Chumley FG, Valent B (1996) Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. Mol Plant—Microbe Interact 9:261–271

    Article  CAS  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Forrest G, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pohler W, Schlegel R (1990) A rye plant with frequent A-B chromosome pairing. Hereditas 112:217–220

    Article  Google Scholar 

  • Schlegel R, Pohler W (1994) Identification of an A-B chromosome translocation in diploid rye (Secale cereale L.). Breed Sci 44:279–283

    Google Scholar 

  • Silué D, Notteghem JL, Tharreau D (1992) Evidence of a gene-for-gene relationship in the Oryza sativaMagnaporthe grisea pathosystem. Phytopathology 82:577–580

    Article  Google Scholar 

  • Tosa Y, Hirata K, Tamba H, Nakagawa S, Chuma I, Isobe C, Osue J, Urashima AS, Don LD, Kusaba M, Nakayashiki H, Tanaka A, Tani T, Mori N, Mayama S (2004) Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species-specific pathotypes of the blast fungus. Phytopathology 94:454–462

    Article  PubMed  CAS  Google Scholar 

  • Tsuge T, Hayashi N, Nishimura S (1986) Metabolic regulation of host-specific toxin production in Alternaria alternata pathogens (3). Instability of pathogenicity in field isolates of A. alternata Japanese pear pathotype. Ann Phytopath Soc Japan 52:488–491

    Article  Google Scholar 

  • Yamagashira A, Iwai C, Misaka M, Hirata K, Fujita Y, Tosa Y, Kusaba M (2008) Taxonomic characterization of Pyricularia isolates from green foxtail and giant foxtail, wild foxtails in Japan. J Gen Plant Pathol 74:230–241

    Article  CAS  Google Scholar 

  • Yamasaki Y, Kiyosawa S (1966) Studies on inheritance of resistance of rice varieties to blast, 1. Inheritance of resistance of Japanese varieties to several strains of the fungus (in Japanese). Bull Natl Inst Agr Sci D14:39–69

    Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number 20248005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoaki Kusaba.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Strains used in this study (PPTX 92 kb)

294_2014_437_MOESM2_ESM.docx

Comparisons of sexual fertility and mycelial growth between F1-327 and its subcultured strains lacking the 1.6 Mb chromosome (DOCX 32 kb)

Physical assignment of Pex31 homologs to chromosomes of the parental strains, 84R-62B and Y93-245c-2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusaba, M., Mochida, T., Naridomi, T. et al. Loss of a 1.6 Mb chromosome in Pyricularia oryzae harboring two alleles of AvrPik leads to acquisition of virulence to rice cultivars containing resistance alleles at the Pik locus. Curr Genet 60, 315–325 (2014). https://doi.org/10.1007/s00294-014-0437-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0437-y

Keywords

Navigation