Skip to main content
Log in

The complete mitochondrial genome sequence of Brassica oleracea and analysis of coexisting mitotypes

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The complete mitochondrial genome sequences of Brassica species have provided insight into inter- and intraspecific variation of plant mitochondrial genomes. However, the size of mitochondrial genome sequenced for Brassica oleracea hitherto does not match to its physical mapping data. This fact led us to investigate B. oleracea mitochondrial genome in detail. Here we report novel B. oleracea mitochondrial genome, derived from var. capitata, a cabbage cultivar ‘‘Fujiwase’’. The genome was assembled into a 219,952-bp circular sequence that is comparable to the mitochondrial genomes of other Brassica species (ca. 220–232 kb). This genome contained 34 protein-coding genes, 3 rRNA genes and 17 tRNA genes. Due to absence of a large repeat (140 kb), the mitochondrial genome of ‘‘Fujiwase’’ is clearly smaller than the previously reported mitochondrial genome of B. oleracea accession ‘‘08C717’’ (360 kb). In both mitotypes, all genes were identical, except cox2-2, which was present only in the Fujiwase type. At least two rearrangement events via large and small repeat sequences have contributed to the structural differences between the two mitotypes. PCR-based marker analysis revealed that the Fujiwase type is predominant, whereas the 08C717 type coexists at low frequency in all B. oleracea cultivars examined. Intraspecific variations in the mitochondrial genome in B. oleracea may occur because of heteroplasmy, coexistence of different mitotypes within an individual, and substoichiometric shifting. Our data indicate that the Fujiwase-type genome should be used as the representative genome of B. oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Guan NL, Meyer L, Sun H, Kim K, Wang C et al (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 6:e16404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    Article  PubMed  CAS  Google Scholar 

  • Bonen L, Gray MW (1980) Organization and expression of the mitochondrial genome of plants. I. The genes for wheat mitochondrial ribosomal and transfer RNA: evidence for an unusual arrangement. Nucleic Acids Res 8:319–335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang S, Yang T, Du T, Huang Y, Chen J, Yan J, He J, Guan R (2011) Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics 12:497–508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen J, Guan R, Chang S, Du T, Zhang H, Xing H (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One 6:e17662

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chétritl P, Mathieu C, Muller JP, Vedel F (1984) Physical and gene mapping of cauliflower (Brassica oleracea) mitochondrial DNA. Curr Genet 8:413–421

    Article  PubMed  Google Scholar 

  • Darracq A, Varré JS, Touzet P (2010) A scenario of mitochondrial genome evolution in maize based on rearrangement events. BMC Genomics 11:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Davila J, Arrieta-Montiel M, Wamboldt Y, Cao J, Hagmann J, Shedge V, Xu YZ, Weigel D, Mackenzie S (2011) Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol 9:64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feng X, Kaur AP, MacKenzie SA, Dweikat IM (2009) Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor Appl Genet 118:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Kazama T, Yamada M, Toriyama K (2010) Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genomics 11:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maréchal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317

    Article  PubMed  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

  • Palmer JD (1988) Intraspecific variation and multicircularity in Brassica mitochondrial DNAs. Genetics 118:341–351

    PubMed  CAS  PubMed Central  Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11:565–570

    Article  PubMed  CAS  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012a) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001214

    Article  Google Scholar 

  • Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H (2012b) Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol 196:1228–1239

    Article  PubMed  CAS  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics 13:352–363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes—though this be madness, yet there’s method in’t. J Exp Bot 61:657–671

    Article  PubMed  CAS  Google Scholar 

  • Woloszynska M, Trojanowski D (2009) Counting mtDNA molecules in Phaseolus vulgaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Mol Biol 70:511–521

    Article  PubMed  CAS  Google Scholar 

  • Zaegel V, Guermann B, Le Ret M, Andres C, Meyer D, Erhardt M, Canaday J, Gualberto JM, Imbault P (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18:3548–3563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Private University Strategic Research Foundation Support Program, Grants-in-Aid for Scientific Research, Scientific Research (B) (No. 22380008), and the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamagishi.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

294_2014_433_MOESM1_ESM.pdf

Validation of contig linkage by PCR analysis. (A) Map of linkages between contigs. (B) PCR analysis to confirm the linkages. The primer information used for this PCR analysis is described in Supplementary Table 1 (PDF 221 kb)

Supplementary material 2 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Tsuda, M., Yasumoto, K. et al. The complete mitochondrial genome sequence of Brassica oleracea and analysis of coexisting mitotypes. Curr Genet 60, 277–284 (2014). https://doi.org/10.1007/s00294-014-0433-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0433-2

Keywords

Navigation