Skip to main content
Log in

Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The development of highly efficient genome engineering reagents is of paramount importance to launch the next wave of biotechnology. TAL effectors have been developed as an adaptable DNA binding scaffold that can be engineered to bind to any user-defined sequence. Thus, TAL-based DNA binding modules have been used to generate chimeric proteins for a variety of targeted genome modifications across eukaryotic species. For example, TAL effectors fused to the catalytic domain of FokI endonuclease (TALENs) were used to generate site-specific double strand breaks (DSBs), the repair of which can be harnessed to dictate user-desired, genome-editing outcomes. To cleave DNA, FokI endonuclease must dimerize which can be achieved using a pair of TALENs that bind to the DNA targeted in a tail-to-tail orientation with proper spacing allowing the dimer formation. Because TALENs binding to DNA are dependent on their repeat sequences and nucleotides binding specificities, homodimers and heterodimers binding can be formed. In the present study, we used several TALEN monomers with increased repeats binding degeneracy to allow homodimer formation at increased number of genomic loci. We assessed their binding specificities and genome modification activities. Our results indicate that homodimeric TALENs could be used to modify the yeast genome in a site-specific manner and their binding to the promoter regions might modulate the expression of target genes. Taken together, our data indicate that homodimeric TALENs could be used to achieve different engineering possibilities of biotechnological applications and that their transcriptional modulations need to be considered when analyzing their phenotypic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 95:10570–10575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 Family-Type III Effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  PubMed  CAS  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark KJ, Voytas DF, Ekker SC (2011) A TALE of two nucleases: gene targeting for the masses? Zebrafish 8:147–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cong L, Zhou R, Y-c Kuo, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8:e1002861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012a) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N, Shi Y (2012b) Recognition of methylated DNA by TAL effectors. Cell Res 22:1502–1504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Gaj T, Barbas Iii CF (2010) Directed evolution of an enhanced and highly efficient fokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Methods Enzymol 3–37

  • Heuer H, Yin YN, Xue QY, Smalla K, Guo JH (2007) Repeat domain diversity of avrBs3-like genes in Ralstonia solanacearum strains and association with host preferences in the field. Appl Environ Microbiol 73:4379–4384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  CAS  Google Scholar 

  • Hutter KJ, Eipel HE (1979) Microbial determinations by flow cytometry. J Gen Microbiol 113:369–375

    Google Scholar 

  • Kay S, Boch J, Bonas U (2005) Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant-Microbe Interact 18:838–848

    Article  PubMed  CAS  Google Scholar 

  • Leduc A, He CH, Ramotar D (2003) Disruption of the Saccharomyces cerevisiae cell-wall pathway gene SLG1 causes hypersensitivity to the antitumor drug bleomycin. Mol Genet Genomics 269:78–89

    PubMed  CAS  Google Scholar 

  • Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JS, Zhu JK, Mahfouz MM (2012a) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78:407–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012b) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  PubMed  CAS  Google Scholar 

  • Li L, Atef A, Piatek A, Ali Z, Piatek M, Aouida M, Sharakou A, Mahjoub A, Wang G, Khan S, Fedoroff NV, Zhu JK, Mahfouz M (2013) Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Mol Plant 6:1318–1330

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng W-M, Jiao R (2012) Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genom 39:209–215

    Article  CAS  Google Scholar 

  • Mahfouz MM (2010) RNA-directed DNA methylation: mechanisms and functions. Plant Signal Behav 5:806–816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahfouz MM, Li L (2011) TALE nucleases and next generation GM crops. GM Crop 2:99–103

    Article  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, Zhu JK (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 3:311–321

    Article  CAS  Google Scholar 

  • Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masson JY, Ramotar D (1997) Normal processing of AP sites in Apn1-deficient Saccharomyces cerevisiae is restored by Escherichia coli genes expressing either exonuclease III or endonuclease III. Mol Microbiol 24:711–721

    Article  PubMed  CAS  Google Scholar 

  • Morbitzer R, Romer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci USA 107:21617–21622

    Article  PubMed  PubMed Central  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  PubMed  CAS  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T, Voytas DF, Joung JK (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  PubMed  CAS  Google Scholar 

  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  PubMed  CAS  Google Scholar 

  • Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan Q, Wang Y, Chen K, Liang Z, Li JUN, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant 4:1365–1368

    Article  CAS  Google Scholar 

  • Sherman F, Fink GR, Hicks J (1983) Laboratory course manual for methods in yeast genetics.  Cold Spring Harbor Laboratory, Plainview, NY 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  PubMed  CAS  Google Scholar 

  • Streubel J, Blucher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595

    Article  PubMed  CAS  Google Scholar 

  • Voytas DF, Joung JK (2009) Plant science. DNA binding made easy. Science 326:1491–1492

    Article  PubMed  CAS  Google Scholar 

  • Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK (1998) Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci USA 95:10564–10569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Voytas DF (2011) Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. Methods Mol Biol 701:167–177

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Bioscience Core Facility and Optical, Imaging Core Lab King Abdullah University of Science and Technology KAUST for technical assistance. We also thank Nina Fedoroff and the members of the genome engineering group at KAUST for their helpful discussions and technical assistance throughout the preparation of the manuscript. No conflict of interest declared. This research is funded from the Center for Desert Agriculture and genome engineering group baseline funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy M. Mahfouz.

Additional information

Communicated by P. Sunnerhagen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouida, M., Piatek, M.J., Bangarusamy, D.K. et al. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae . Curr Genet 60, 61–74 (2014). https://doi.org/10.1007/s00294-013-0412-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-013-0412-z

Keywords

Navigation