Skip to main content
Log in

Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Over the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and biochemical methods, leading to remarkable advances in the understanding of its biogenesis and molecular architecture as well as to the mechanisms by which this organelle is remodeled in response to environmental stresses. Being a dynamic structure that constitutes the frontier between the cell interior and its immediate surroundings, imaging cell surface, measuring mechanical properties of cell wall or probing cell surface proteins for localization or interaction with external biomolecules are among the most burning questions that biologists wished to address in order to better understand the structure–function relationships of yeast cell wall in adhesion, flocculation, aggregation, biofilm formation, interaction with antifungal drugs or toxins, as well as response to environmental stresses, such as temperature changes, osmotic pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most qualified and developed technique that offers the possibilities to address these questions since it allows working directly on living cells to explore and manipulate cell surface properties at nanometer resolution and to analyze cell wall proteins at the single molecule level. In this minireview, we will summarize the most recent contributions made by AFM in the analysis of the biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the surface of living yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adya AK, Canetta E, Walker GM (2006) Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Res 6:120–128

    Article  PubMed  CAS  Google Scholar 

  • Aguilar-Uscanga B, Francois JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274

    Article  PubMed  CAS  Google Scholar 

  • Alsteens D, Dague E, Rouxhet PG, Baulard AR, Dufrene YF (2007) Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23:11977–11979

    Article  PubMed  CAS  Google Scholar 

  • Alsteens D, Dupres V, Mc EK, Wildling L, Gruber HJ, Dufrene YF (2008) Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology 19:384005

    Article  PubMed  Google Scholar 

  • Alsteens D, Dupres V, Yunus S, Latge JP, Heinisch JJ, Dufrene YF (2012) High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir 28:16738–16744

    Article  PubMed  CAS  Google Scholar 

  • Backhaus K, Heilmann CJ, Sorgo AG, Purschke G, de Koster CG, Klis FM, Heinisch JJ (2010) A systematic study of the cell wall composition of Kluyveromyces lactis. Yeast 27:647–660

    Article  PubMed  CAS  Google Scholar 

  • Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470

    Article  PubMed  CAS  Google Scholar 

  • Bauer FF, Govender P, Bester MC (2010) Yeast flocculation and its biotechnological relevance. Appl Microbiol Biotechnol 88:31–39

    Article  PubMed  CAS  Google Scholar 

  • Binnig G, Quate CF (1986) Atomic force microscopy. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  • Cabib E, Arroyo J (2013) How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 11:648–655

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682

    Article  PubMed  CAS  Google Scholar 

  • Canetta E, Adya AK, Walker GM (2006) Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiol Lett 255:308–315

    Article  PubMed  CAS  Google Scholar 

  • Canetta E, Walker GM, Adya AK (2009) Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study. J Microbiol Biotechnol 19:547–555

    PubMed  CAS  Google Scholar 

  • Caridi A (2006) Enological functions of parietal yeast mannoproteins. Antonie Van Leeuwenhoek 89:417–422

    Article  PubMed  Google Scholar 

  • Carrillo-Munoz AJ, Giusiano G, Ezkurra PA, Quindos G (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 19:130–139

    PubMed  CAS  Google Scholar 

  • Casuso I, Rico F, Scheuring S (2011) High-speed atomic force microscopy: structure and dynamics of single proteins. Curr Opin Chem Biol 15:704–709

    Article  PubMed  CAS  Google Scholar 

  • Chopinet L, Formosa C, Rols MP, Duval RE, Dague E (2013) Imaging living cells surface and quantifying its properties at high resolution using AFM in QI mode. Micron 48:26–33

    Article  PubMed  CAS  Google Scholar 

  • Dague E, Alsteens D, Latge JP, Verbelen C, Raze D, Baulard AR, Dufrene YF (2007) Chemical force microscopy of single live cells. Nano Lett 7:3026–3030

    Article  PubMed  CAS  Google Scholar 

  • Dague E, Delcorte A, Latge JP, Dufrene YF (2008) Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis. Langmuir 24:2955–2959

    Article  PubMed  CAS  Google Scholar 

  • Dague E, Bitar R, Ranchon H, Durand F, Yken HM, Francois JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–684

    Article  PubMed  CAS  Google Scholar 

  • Dague E, Jauvert E, Laplatine L, Viallet B, Thibault C, Ressier L (2011) Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. Nanotechnology 22:395102

    Article  PubMed  CAS  Google Scholar 

  • de Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675

    Article  PubMed  Google Scholar 

  • de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7:1951–1964

    Article  PubMed  Google Scholar 

  • Deresinski SC, Stevens DA (2003) Caspofungin. Clin Infect Dis 36:1445–1457

    Article  PubMed  CAS  Google Scholar 

  • Dufrene YF (2010) Atomic force microscopy of fungal cell walls: an update. Yeast 27:465–471

    Article  PubMed  CAS  Google Scholar 

  • Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623

    Article  PubMed  CAS  Google Scholar 

  • Dupres V, Alsteens D, Wilk S, Hansen B, Heinisch JJ, Dufrene YF (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862

    Article  PubMed  CAS  Google Scholar 

  • Dupres V, Dufrene YF, Heinisch JJ (2010) Measuring cell wall thickness in living yeast cells using single molecular rulers. ACS Nano 4:5498–5504

    Article  PubMed  CAS  Google Scholar 

  • Ebner A, Hinterdorfer P, Gruber HJ (2007) Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107:922–927

    Article  PubMed  CAS  Google Scholar 

  • El Kirat K, Burton I, Dupres V, Dufrene YF (2005) Sample preparation procedures for biological atomic force microscopy. J Microsc 218:199–207

    Article  PubMed  Google Scholar 

  • Formosa C, Schiavone M, Martin-Yken H, Francois JM, Duval RE, Dague E (2013) Nanoscale effects of Caspofungin against two yeast species; Saccharomyces cerevisiae and Candida albicans. Antimicrob Agents Chemother 57:3498–3506

    Article  PubMed  CAS  Google Scholar 

  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    Article  PubMed  CAS  Google Scholar 

  • Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625

    Article  PubMed  CAS  Google Scholar 

  • Gad M, Ikai A (1995) Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys J 69:2226–2233

    Article  PubMed  CAS  Google Scholar 

  • Gad M, Itoh A, Ikai A (1997) Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol Int 21:697–706

    Article  PubMed  CAS  Google Scholar 

  • Gotzinger M, Weigl B, Peukert W, Sommer K (2007) Effect of roughness on particle adhesion in aqueous solutions: a study of Saccharomyces cerevisiae and a silica particle. Colloids Surf B Biointerfaces 55:44–50

    Article  PubMed  Google Scholar 

  • Guo S, Shen X, Yan G, Ma D, Bai X, Li S, Jiang Y (2009) A MAP kinase dependent feedback mechanism controls Rho1 GTPase and actin distribution in yeast. PLoS ONE 4:e6089

    Article  PubMed  Google Scholar 

  • Heinisch JJ (2005) Baker’s yeast as a tool for the development of antifungal kinase inhibitors–targeting protein kinase C and the cell integrity pathway. Biochim Biophys Acta 1754:171–182

    Article  PubMed  CAS  Google Scholar 

  • Heinisch JJ (2008) Baker’s yeast as a tool for the development of antifungal drugs which target cell integrity—an update. Expert Opin Drug Discov 3:931–943

    Article  PubMed  CAS  Google Scholar 

  • Heinisch JJ, Lipke PN, Beaussart A, El Kirat CS, Dupres V, Alsteens D, Dufrene YF (2012) Atomic force microscopy—looking at mechanosensors on the cell surface. J Cell Sci 125:4189–4195

    Article  PubMed  CAS  Google Scholar 

  • Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  PubMed  CAS  Google Scholar 

  • Hinterdorfer P, Garcia-Parajo MF, Dufrene YF (2012) Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res 45:327–336

    Article  PubMed  CAS  Google Scholar 

  • Jauvert E, Dague E, Severac M, Caminade A, Ressier L, Majoral J, Trevisiol E (2012) Probing sungle molecule interactions by AFM using biofunctionalized dendritips. Sensor Actuators B Chem 168:436–441

    Article  CAS  Google Scholar 

  • Jendretzki A, Wittland J, Wilk S, Straede A, Heinisch JJ (2011) How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. Eur J Cell Biol 90:740–744

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Kim YS, Han I, Kim MH, Jung MH, Park HK (2011) Quantitative and qualitative analyses of the cell death process in Candida albicans treated by antifungal agents. PLoS ONE 6:e28176

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Kim KS, Han I, Kim MH, Jung MH, Park HK (2012) Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs. PLoS ONE 7:e38242

    Article  PubMed  CAS  Google Scholar 

  • Kirat-Chatel S, Beaussart A, Alsteens D, Jackson DN, Lipke PN, Dufrene YF (2013) Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale 5:1105–1115

    Article  PubMed  Google Scholar 

  • Klis FM, Boorsma A, de Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202

    Article  PubMed  CAS  Google Scholar 

  • Klis FM, Sosinska GJ, de Groot PW, Brul S (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9:1013–1028

    Article  PubMed  CAS  Google Scholar 

  • Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. Beta(1→6)-glucan interconnects mannoprotein, beta(1→)3-glucan, and chitin. J Biol Chem 272:17762–17775

    Article  PubMed  CAS  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    Article  PubMed  CAS  Google Scholar 

  • Lesage G, Sdicu AM, Menard P, Shapiro J, Hussein S, Bussey H (2004) Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167:35–49

    Article  PubMed  CAS  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  PubMed  CAS  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    Article  PubMed  CAS  Google Scholar 

  • Lodder AL, Lee TK, Ballester R (1999) Characterization of the wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics 152:1487–1499

    PubMed  CAS  Google Scholar 

  • Lottersberger F, Panza A, Lucchini G, Piatti S, Longhese MP (2006) The Saccharomyces cerevisiae 14-3-3 proteins are required for the G1/S transition, actin cytoskeleton organization and cell wall integrity. Genetics 173:661–675

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Vilas A, Diaz J, Donoso MG, Gallardo-Moreno AM, Gonzalez-Martin ML (2006) Ultrastructural and physico-chemical heterogeneities of yeast surfaces revealed by mapping lateral-friction and normal-adhesion forces using an atomic force microscope. Antonie Van Leeuwenhoek 89:495–509

    Article  PubMed  Google Scholar 

  • Mishra NN, Prasad T, Sharma N, Payasi A, Prasad R, Gupta DK, Singh R (2007) Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung 54:201–235

    Article  PubMed  CAS  Google Scholar 

  • Moseley JB, Goode BL (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70:605–645

    Article  PubMed  CAS  Google Scholar 

  • Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469

    Article  PubMed  Google Scholar 

  • Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818

    Article  PubMed  CAS  Google Scholar 

  • Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Reinoso-Martin C, Schuller C, Schuetzer-Muehlbauer M, Kuchler K (2003) The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2:1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  PubMed  CAS  Google Scholar 

  • Schatzmayr G, Zehner F, Taubel M, Schatzmayr D, Klimitsch A, Loibner AP, Binder EM (2006) Microbiologicals for deactivating mycotoxins. Mol Nutr Food Res 50:543–551

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Martin H, Casamayor A, Arino J (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281:39785–39795

    Article  PubMed  CAS  Google Scholar 

  • Smits GJ, Kapteyn JC, van den Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352

    Article  PubMed  CAS  Google Scholar 

  • Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24

    PubMed  CAS  Google Scholar 

  • Touhami A, Nysten B, Dufrêne YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4546

    Google Scholar 

  • van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    PubMed  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  PubMed  CAS  Google Scholar 

  • Walker MA (1998) Yeast physiology and Biotechnology. Wiley, West Sussex

    Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  PubMed  CAS  Google Scholar 

  • Wilk S, Wittland J, Thywissen A, Schmitz HP, Heinisch JJ (2010) A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo. Mol Genet Genomics 284:217–229

    Article  PubMed  CAS  Google Scholar 

  • Yiannikouris A, Andre G, Poughon L, Francois J, Dussap CG, Jeminet G, Bertin G, Jouany JP (2006) Chemical and conformational study of the interactions involved in mycotoxin complexation with beta-d-Glucans. Biomacromolecules 7:1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Schaefer D, Xu H, Modi SJ, LaCourse WR, Marten MR (2005) Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy. Biotechnol Prog 21:292–299

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Marie Francois.

Additional information

Communicated by I. Hapala

Special issue: Yeast membranes and cell wall: From basics to applications

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francois, J.M., Formosa, C., Schiavone, M. et al. Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae . Curr Genet 59, 187–196 (2013). https://doi.org/10.1007/s00294-013-0411-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-013-0411-0

Keywords

Navigation