Skip to main content

Advertisement

Log in

Investigation of the electronic, optoelectronics, and linear and nonlinear optical properties of the molecules heptacene ([7]acene) (C30H18) and [7]acene doped with potassium atom (C30H9K9)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Structural, electronic, optoelectronics, and linear and nonlinear optical properties of C30H18 and C30H9K9 are comparatively studied from first-principles calculations. Dipole moment, average polarizability, first molecular polarizability, molar refractivity, electron affinities, first ionization energies, work function, Eg, electric susceptibility, refractive index, dielectric constant, and magnitude of the displacement vector were computed. Adiabatic and vertical electron affinity and ionization potential and quasi-particle correction to Eg were determined. Total electronic energy and Eg of C30H9K9 are about 2.71–3.84 eV smaller than those of C30H18. Because of electron correlations, Eg decreases about 0.14–0.57 eV for C30H18 and by 0.3–0.84 eV for C30H9K9. The <α>, χ, η, and βmol C30H9K9 are larger than their corresponding values of C30H18. Our results for C30H18 are in excellent agreement with theory. Results suggest that these molecules have potential applications as semiconductor components, linear and nonlinear optical materials, photoactive materials in optoelectronic devices, and possible building blocks for molecular electronics and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Friend RH, Burn PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  2. Harrison MG, Friend RH (1998) Chapter 10. Optical applications. In: Mullen K, Wegner G (eds) Electronic materials: the oligomer approach. Wiley-VCH, Weinheim

    Google Scholar 

  3. Kan Y, Wang L, Duan L, Hu Y, Wu G, Qiu Y (2004) Highly-efficient blue electroluminescence based on two emitter isomers. Appl Phys Lett 84(9):1513–1515

    Article  CAS  Google Scholar 

  4. Halik M, Klauk H, Zschieschang U, Kriem T, Schmid G, Radlik W, Wussow K (2002) Fully patterned of all-organic thin films transistors. Appl Phys Lett 81:289–291

    Article  CAS  Google Scholar 

  5. Yoo S, Domercq B, Kippelen B (2004) Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl Phys Lett 85:5427

    Article  CAS  Google Scholar 

  6. Shiyanovskaya I, Singer KD, Percec V, Bera TK, Miura Y, Glodde M (2003) Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons. Phys Rev B 67:035204

    Article  Google Scholar 

  7. Marder SR, Perry JW (1994) Nonlinear polymers: discovery to the market in 10 years. Science 263:1706–1707

    Article  CAS  Google Scholar 

  8. Prasad PN, WiUiams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  9. Ziemelis K (1998) Putting it on plastics. Nature 393:619–620

    Article  CAS  Google Scholar 

  10. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonunear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94:243–278

    Article  CAS  Google Scholar 

  11. Malloci G, Mulas G, Cappellini G, Joblin C (2007) Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states −1, 0, +1, and +2. Chem Phys 340:43

    Article  CAS  Google Scholar 

  12. Cappellini G, Malloci G, Mulas G (2009) Electronic excitations of oligoacenes: a time dependent density functional theory study. Superlattices Microstruct 46:14

    Article  CAS  Google Scholar 

  13. Kraft AC, Grimsdale A, Holmes B (1998) Electroluminescent conjugated polymers-seeing polymers in a new light. Angew Chem Int Ed 37:402

    Article  Google Scholar 

  14. Garay RO (2000) Synthesis of polymers with electro-optical properties. Molecules 5(3):304–306

    Article  CAS  Google Scholar 

  15. Gorman CB, Marder SA (1995) Effect of molecular polarization on bond-length alternation, linear polarizability, first and second hyperpolarizability in donor-acceptor polyenes as a function of chain length. Chem Mater 7(1):215–220

    Article  CAS  Google Scholar 

  16. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Tuning of large second hyperpolarizabilities in organic conjugated compounds. Chem Phys Lett 228:171–176

    Article  CAS  Google Scholar 

  17. Marder SR, Perry JW, Bourhiu G, Gorman CB, Tiemann BG, Mansour K (1993) Relation Between Bond-Length Alternation and Second Electronic HyperpolarizabiUties of Conjugated Organic Molecules. Science 261:186–189

    Article  CAS  Google Scholar 

  18. Marder SR, Beratan DN, Cheng LT (1991) Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules. Science 252:103–106

    Article  CAS  Google Scholar 

  19. Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem Rev 104(11):4891–4946

    Article  CAS  Google Scholar 

  20. Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106(12):5028–5048

    Article  CAS  Google Scholar 

  21. Anthon JE (2008) The larger acenes: versatile organic semiconductors. Angew Chem Int Ed Engl 47(3):452–483

    Article  Google Scholar 

  22. Yang Y, Davidson ER, Yang W (2016) Nature of ground and electronic excited states of higher acenes. Proc Natl Acad Sci USA 113(35):E5098-107. doi:10.1073/pnas.1606021113

  23. Costa MBS, Machado AEA, Pavao AC (2013) Theoretical assessment of the nonlinear optical properties of substituted oligoacenes. J Mater Sci 48:192–200

    Article  CAS  Google Scholar 

  24. Ejuh GW, Nouemo S, Nya FT, Ndjaka JMB (2016) Computational determination of the electronic and nonlinear optical properties of the molecules 2-(4-aminophenyl) quinoline, 4-(4-aminophenyl) quinoline, anthracene, anthraquinone and phenanthrene. Mater Lett 178:221–226

    Article  CAS  Google Scholar 

  25. Becke AD (1993) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  27. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, JrJA Montgomery, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann KM, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich J, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian, Inc., Wallingford

    Google Scholar 

  29. Champagne B, Spassova M (2009) Theoretical investigation on the polarizability and second hyperpolarizability of polysilole. Chem Phy Lett 471:111–115

    Article  CAS  Google Scholar 

  30. Kobus J, Moncrieff D, Wilson S (2004) Comparison of the polarizabilities and hyperpolarizabilities obtained from finite basis set and finite difference Hartree-Fock calculations for diatomic molecules: II. Refinement of basis sets and grids for hyperpolarizability calculations. J Phys B Atom Mol Opt Phys 37(3):571

    Article  CAS  Google Scholar 

  31. Vila FD, Strubbe DA, Takimoto Y, Andrade X, Rubio A, Louie SG, Rehr JJ (2010) Basis set effects on the hyperpolarizability of CHCl3: Gaussian-type orbitals, numerical basis sets and real-space grids. J Chem Phys 133:034111

    Article  Google Scholar 

  32. Lu Y-J, Lee S-L (1993) Semi-empirical calculations of the nonlinear optical properties of polycyclic aromatic compounds. Chem Phys 179:431–444

    Article  Google Scholar 

  33. Malloci G, Capellini G, Mulas G, Mattoni A (2011) Electronic and optical properties of families of polycyclic aromatic hydrocarbons: a systematic (time-dependent) density functional theory study. Cond-Mat Mtrl-sci. arXiv:1104.2978(1)

  34. Tielens AGGM (2008) Interstellar polycyclic aromatic hydrocarbon molecules. Ann Rev Astron Astrophys 46:289

    Article  CAS  Google Scholar 

  35. Kubozono Y, Mitamura H, Lee X, He X, Yi Yamanar, Kato Y, Kosugi T, Aoki H (2011) Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors. Phys Chem Chem Phys 13(37):16476–16493

    Article  CAS  Google Scholar 

  36. Okamoto H, Eguchi R, Hamao S, Goto H, Gotoh K, Sakai Y, Izumi M, Takaguchi Y, Gohda S, Kubozono Y (2014) An extended phenacene-type molecule, [8]phenacene: synthesis and transistor application. Sci Rep 4(5330):1–8

    Google Scholar 

  37. Tovstopyat A, Zojer E, Leising G (2016) Electronic properties of 1,2;8,9-dibenzopentacene in solutions, solid matrices, and thin films. J Appl Spectrosc 83:20–26. doi:10.1007/s10812-016-0236-y

    Article  CAS  Google Scholar 

  38. Shimo Y, Mikami T, Hamao S, Goto H, Okamoto H, Eguchi R, Gohda S, Hayashil Y, Kubozono Y (2016) Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene. Sci Rep 6(21008):1–13. doi:10.1038/srep21008

    Google Scholar 

  39. Khakpoor AA, Keshe BA (2015) Electronic and optical properties of nanostructures and its relationship with Harari Index. J Mater Sci Chem Eng 3:1–5

    Google Scholar 

  40. Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899

    Article  CAS  Google Scholar 

  41. Besheshti A, Riahti S, Ganjali MR (2009) Quantitative structure–property relationship study on first reduction and oxidation potentials of donor-substituted phenylquinolinylethynes and phenylisoquinolinylethynes: quantum chemical investigation. Electrochim Acta 54:5368

    Article  Google Scholar 

  42. Chen ECM, Chen ESD (2004) Electron capture detector and the study of reactions with thermal electrons. In: Analytical chemistry, Wiley. doi:10.1002/0471659894

  43. Riahi S, Faridbod F, Ganjali MR (2009) Caffeine sensitive electrode and its analytical applications. Sensor Lett 7(1):42–49

    Article  CAS  Google Scholar 

  44. Wong MW, Wiberg KB, Frisch MJ (1992) Solvent effects. 3. Tautomeric equilibria of formamide and 2-Pyridone in the gas phase and solution. An ab Initio SCRF study. J Am Chem Soc 114:1645–1652

    Article  CAS  Google Scholar 

  45. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are thankful to the Council of Scientific and Industrial Research (CSIR), India for financial support through Emeritus Professor scheme (Grant No. 21(0582)/03/EMR-II) to Prof. A. N. Singh of the Physics Department, Bahamas Hindu University, India which enabled him to purchase the Gaussian Software. We are most grateful to Emeritus Prof. A. N. Singh for donating this software to Physics Department, Gombe State University, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Ejuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejuh, G.W., Nya, F.T., Kamsi, R.A.Y. et al. Investigation of the electronic, optoelectronics, and linear and nonlinear optical properties of the molecules heptacene ([7]acene) (C30H18) and [7]acene doped with potassium atom (C30H9K9). Polym. Bull. 75, 637–652 (2018). https://doi.org/10.1007/s00289-017-2058-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2058-3

Keywords

Navigation