Skip to main content
Log in

Flexible and free-standing films containing cobalt-doped nanocrystalline zinc oxide dispersed in polyvinylidene fluoride matrix: synthesis and characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthesis of free-standing flexible Co-ZnO/PVDF composite films is realized by sol–gel technique. Modulation of the optical and microstructural properties of the above composite films with Co-doped nanocrystalline ZnO loading in PVDF matrix was studied critically. Uniform dispersion of Co-doped ZnO in PVDF matrix was indicated by SIMS studies. Information on the bonding environment was obtained from X-ray photoelectron spectroscopy and Raman spectroscopy studies. A very strong peak at ~695 eV for core level spectra of F1s along with those for C1s, Zn2p and Co2p dominated the XPS spectra of the composite films. Presence of the predominant β-phase of PVDF along with peaks related to ZnO nanocrystals in the poled sample was observed in the Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ueda K, Tabata H, Kawai T (2001) Magnetic and electric properties of transition metal doped ZnO films. Appl Phys Lett 79:988–990. doi:10.1063/1.1384478

    Article  CAS  Google Scholar 

  2. Saeki H, Tabata H, Kawai T (2001) Magnetic and electrical properties of vanadium doped ZnO films. Solid State Commun 120:439–443. doi:10.1016/S0038-1098(01)00400-8

    Article  CAS  Google Scholar 

  3. Han SJ, Song JW, Yang CH, Park SH, Park JH, Jeong YH, Rhie KW (2002) A key to room temperature ferromagnetism in Fe-doped ZnO:Cu. Appl Phys Lett 81:4212–4214. doi:10.1063/1.1525885

    Article  CAS  Google Scholar 

  4. Cho YM, Choo WK, Kim H, Kim D, Ihm YE (2002) Effect of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1−x (Co 0.5 Fe 0.5) thin films. Appl Phys Lett 80:3358–3360. doi:10.1063/1.1478146

    Article  CAS  Google Scholar 

  5. Yu SF, Yuen C, Lau SP, Park WI, Yi GC (2004) Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl Phys Lett 84:3241–3243. doi:10.1063/1.1734681

    Article  CAS  Google Scholar 

  6. Choy JH, Jang ES, Won JH, Chung JH, Jang DJ, Kim YW (2003) Soft solution route to directionally grown ZnO nanorod arrays on Si wafer, room temperature ultraviolent laser. Adv Mater 15:1911–1914. doi:10.1002/adma.200305327

    Article  CAS  Google Scholar 

  7. Radovanovic PV, Barrelet CJ, Gradecak S, Qian F, Lieber CM (2005) General synthesis of Mn doped II–VI and III–V semiconductor nanowires. Nano Lett 5:1407–1411. doi:10.1021/nl050747t

    Article  CAS  Google Scholar 

  8. He R, Hocking RK, Tsuzuki T (2012) Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mat Chem Phys 132:1035–1040. doi:10.1016/j.matchemphys.2011.12.06110.1016

    Article  CAS  Google Scholar 

  9. Jiansirisomboon S, Songsiri K, Watcharapasorn A, Tunkasiri T (2006) Mechanical properties and crack growth behavior in poled ferroelectric PMN–PZT ceramics. Curr Appl Phys 6:299–302. doi:10.1016/j.cap.2005.11.004

    Article  Google Scholar 

  10. Gleskova H, Cheng IC, Wagner S, Sturm JC, Suo Z (2006) Mechanics of thin-film transistors and solar cells on flexible substrates. Sol Energy 80:687–693. doi:10.1016/j.solener.2005.10.010

    Article  CAS  Google Scholar 

  11. Loh KJ, Chang D (2011) Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J Mater Sci 46:228–237. doi:10.1007/s10853-010-4940-3

    Article  CAS  Google Scholar 

  12. Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76:3804–3806. doi:10.1063/1.126787

    Article  CAS  Google Scholar 

  13. Huang C, Zhang Q (2004) Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv Funct Mater 14:501–506. doi:10.1002/adfm.200305021

    Article  CAS  Google Scholar 

  14. Li JY, Huang C, Zhang Q (2004) Enhanced electromechanical properties in all-polymer percolative composites. Appl Phys Lett 84:3124–3126. doi:10.1063/1.1702127

    Article  CAS  Google Scholar 

  15. Sláma J, Dosoudil R, Vícen R, Grusková A, Olah V, Hudec I, Ušák E (2003) Frequency dispersion of permeability in ferrite polymer composites. J Magn Magn Mater 254–255:195–197. doi:10.1016/S0304-8853(02)00823-5

    Article  Google Scholar 

  16. Lebourgeoisa R, Berenguerb S, Ramiarinjaonab C, Waeckerle T (2003) Analysis of the initial complex permeability versus frequency of soft nanocrystalline ribbons and derived composites. J Magn Magn Mater 254–255:191–194. doi:10.1016/S0304-8853(02)00821-1

    Article  Google Scholar 

  17. Cardoso VF, Minas G, Costa CM, Tavares CJ, Lanceros-Méndez S (2011) Micro and nanofilms of poly(vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications. Smart Mater Struct 20:087002. doi:10.1088/0964-1726/20/8/087002

    Article  Google Scholar 

  18. Sencadas V, Filho RG, Lanceros-Méndez S (2006) Processing and characterization of a novel nonporous poly (vinilidene fluoride) films in the β phase. J Non Cryst Solids 352:2226–2229. doi:10.1016/j.jnoncrysol.2006.02.052

    Article  CAS  Google Scholar 

  19. Lovinger AJ (1982) In: Basset DC (ed) Developments in crystalline polymers, vol 1. Elsevier Applied Science, London

  20. Nalwa HS (ed) (1995) Ferroelectric polymers: chemistry, physics, and applications, vol 1. New York

  21. Bhunia R, Ghosh D, Ghosh B, Hussain S, Bhar R, Pal AK (2015) Some aspects of microstructural and dielectric properties of nanocrystalline CdS/poly(vinylidene fluoride) composite thin films. Polym Intern 64:924–934. doi:10.1002/pi.4866

    Article  CAS  Google Scholar 

  22. Wang Z, Fan H, Su K, Wen Z (2006) Structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory. Polymer 47:7988–7996. doi:10.1016/j.polymer.2006.09.016

    Article  CAS  Google Scholar 

  23. Goktas A, Mutlu IH (2014) Room temperature ferromagnetism in Mn-doped ZnS nano crystalline thin films grown by sol–gel dip coating process. J Sol Gel Sci Technol 69:120–129. doi:10.1007/s10971-013-3194-3

    Article  CAS  Google Scholar 

  24. Goktas A (2015) Sol–gel derived Zn1−x Fe x S diluted magnetic semiconductor thin films: compositional dependent room or above room temperature ferromagnetism. Appl Surf Sci 340:151–159. doi:10.1016/j.apsusc.2015.02.115

    Article  CAS  Google Scholar 

  25. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100

    Google Scholar 

  26. Wilson ACJ (1963) Mathematical theory of X-ray powder diffractometry. Centrex Pub Co, Eindhoven

    Google Scholar 

  27. Stokes AR, Wilson ACJ (1944) The diffraction of X-ray by distorted crystal aggregates-1. Proc Phys Soc London 56:174–181

    Article  CAS  Google Scholar 

  28. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Minnesota, USA

    Google Scholar 

  29. Mai NT, Thuy TT, Mott DM, Maenosono S (2013) Chemical synthesis of blue-emitting metallic zinc nano-hexagons. Cryst Eng Comm 15:6606–6610. doi:10.1039/C3CE40801A

    Article  CAS  Google Scholar 

  30. Peng YZ, Ye ZG, Ye ZZ, Wang YM, Zhu LP (2008) Structural and magnetic properties of Co-doped ZnO thin films. Chin J Lumin 29:479–485

  31. Lee HJ, Jeong SY, Cho CR, Park CH (2002) Study of diluted magnetic semiconductor: Co-doped ZnO. Appl Phys Lett 81:4020–4022. doi:10.1063/1.1517405

    Article  CAS  Google Scholar 

  32. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140. doi:10.1016/S0169-4332(99)00601-7

    Article  CAS  Google Scholar 

  33. Li G, Wang H, Wang Q, Zhao Y, Wang Z, Du J, Ma Y (2015) Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field. Nanoscale Res Lett 10:112. doi:10.1186/s11671-015-0834-2

    Article  Google Scholar 

  34. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Chanhassen (Chapters 8, 27 and 30)

    Google Scholar 

  35. Boccaccio T, Bottino A, Capannelli G, Piaggio P (2002) Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci 210:315–329. doi:10.1016/S0376-7388(02)00407-6

    Article  CAS  Google Scholar 

  36. Mattsson B, Ericson H, Torell LM, Sundholm F (2000) Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy. Electrochim Acta 45:1405–1408. doi:10.1016/S0013-4686(99)00351-5

    Article  CAS  Google Scholar 

  37. Mattsson B, Ericson H, Torell LM, Sundholm F (1999) Micro-Raman investigations of PVDF-based proton-conducting membranes. J Polym Sci Part A Polym Chem 37:3317–3327. doi:10.1002/(SICI)1099-0518(19990815)37:16<3317

    Article  CAS  Google Scholar 

  38. Riobass MT, Loh KJ, O’Bryan G, Loyola BR (2014) In situ phase change characterization of PVDF thin films using Raman spectroscopy. In: Proc. SPIE 9061. pp 90610Z. doi:10.1117/12.2045430

  39. Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574. doi:10.1103/PhysRev.142.570

    Article  CAS  Google Scholar 

  40. Polsongkram D, Chamninok P, Pukird S, Chow L, Lupan O, Chai G, Khallaf H, Park S, Schulte A (2008) Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys B 403:3713–3717. doi:10.1016/j.physb.2008.06.020

    Article  CAS  Google Scholar 

  41. Kumar S, Basu S, Rana B, Barman A, Chatterjee S, Jha SN, Bhattacharyya D, Sahoo NK, Ghosh AK (2014) Structural, optical and magnetic properties of sol–gel derived ZnO: Co diluted magnetic semiconductor nanocrystals: an EXAFS study. J Mater Chem C 2:481. doi:10.1039/C3TC31834F

    Article  CAS  Google Scholar 

  42. Duan LB, Zhao XR, Liu JM, Wang T, Rao GH (2010) Room-temperature ferromagnetism in lightly doped Cr-doped ZnO nanoparticles. Appl Phys A 99:679–683. doi:10.1007/s00339-010-5590-7

    Article  CAS  Google Scholar 

  43. Aljawfi RN, Rahman F, Batoo KM (2013) Surface defect mediated magnetic interactions and ferromagnetism in Cr/Co Co-doped ZnO nano particles. J Magn Magn Mater 332:130–136. doi:10.1016/j.jmmm.2012.12.014

    Article  CAS  Google Scholar 

  44. Kaushik A, Dalela B, Rathore R, Vats VS, Choudhary BL, Alvi PA, Kujar S, Dalela S (2013) Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals. J Alloy Comp 578:328–335. doi:10.1016/j.jallcom.2013.06.015

    Article  CAS  Google Scholar 

  45. Wang X, Xu J, Yu X, Xue K, Yu J, Zhao X (2007) Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1−x Co x O (0 < x < 0.6). Appl Phys Lett 91:031908. doi:10.1063/1.2759272

    Article  Google Scholar 

  46. Hayes RR, Perry CH (1973) Magnetic excitations in cobalt oxide. Solid State Commun 13:1915–1917. doi:10.1016/0038-1098(73)90757-6

    Article  CAS  Google Scholar 

  47. Chou H, Fan HY (1976) Light scattering by magnons in CoO, MnO, and α-MnS. Phys Rev B 13:3924–3938. doi:10.1103/PhysRevB.13.3924

    Article  CAS  Google Scholar 

  48. Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner A, Alves HR, Hofmann DM, Meyer BK (2002) Nitrogen-related local vibrational modes in ZnO:N. Appl Phys Lett 80:1909–1911. doi:10.1063/1.1461903

    Article  CAS  Google Scholar 

  49. Cheng B, Xiao Y, Wu G, Zhang L (2004) The vibrational properties of one-dimensional ZnO: Ce nanostructures. Appl Phys Lett 84:416–418. doi:10.1063/1.1639131

    Article  CAS  Google Scholar 

  50. Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev EM, Lorenz M, Grundmann M (2003) Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl Phys Lett 83:1974–1976. doi:10.1063/1.1609251

    Article  CAS  Google Scholar 

  51. Fadaei A, Salimi A, Mirzataheri M (2014) Structural elucidation of morphology and performance of the PVDF/PEG membrane. J Polym Res 21:545. doi:10.1007/s10965-014-0545-x

    Article  Google Scholar 

  52. Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57–66. doi:10.1016/j.vibspec.2011.11.005

    Article  CAS  Google Scholar 

  53. Wu L, Wu Y, Pan X, Kong F (2006) Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property. Opt Mater 28:418–422. doi:10.1016/j.optmat.2005.03.007

    Article  Google Scholar 

  54. Kleinwechter H, Janzen C, Knipping J, Wiggers H, Roth P (2002) Formation and properties of ZnO nano-particles from gas phase synthesis processes. J Mater Sci 37:4349–4360. doi:10.1023/A:1020656620050

    Article  CAS  Google Scholar 

  55. Byrappa K, Subramani AK, Ananda S, Rai L, Sunitha KM, Basavalingu MH, Soga BK (2006) Impregnation of ZnO onto activated carbon underhydrothermal conditions and its photocatalytic properties. J Mater Sci 41:1355–1362. doi:10.1007/s10853-006-7341-x

    Article  CAS  Google Scholar 

  56. Manifacier JC, De Murcia M, Fillard JP, Vicario E (1977) Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure. Thin Solid Films 41:127–135. doi:10.1016/0040-6090(77)90395-9

    Article  CAS  Google Scholar 

  57. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall Inc, Englewood Cliffs, p 92

    Google Scholar 

  58. Bhattacharya D, Chaudhuri S, Pal AK (1992) Band gap and optical transitions in thin films from reflectance measurements. Vacuum 43:313–316. doi:10.1016/0042-207X(92)90163-Q

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Board of Research in Nuclear Sciences (BRNS) and UGC-DAE-CSR consortium, Government of India, for the partial financial assistance to carry out this research programme. RD wishes to acknowledge with thanks the financial help for supporting his fellowship through DST-INSPIRE fellowship programme of the Department of Science and Technology, Government of India, while RB wishes to thank the Department of Science and Technology, Government of India, for supporting his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Bhunia, R., Hussain, S. et al. Flexible and free-standing films containing cobalt-doped nanocrystalline zinc oxide dispersed in polyvinylidene fluoride matrix: synthesis and characterization. Polym. Bull. 75, 307–325 (2018). https://doi.org/10.1007/s00289-017-2032-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2032-0

Keywords

Navigation