Skip to main content
Log in

Hexamethylene diamine/carboxymethyl cellulose grafted on magnetic nanoparticles for controlled drug delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, chemically modified iron oxide nanoparticles with super paramagnetic behavior and biodegradable properties were prepared through the reaction of a polymeric layer with surface hydroxyl functional groups of magnetic nanoparticles (MNP). For this purpose firstly, MNP was grafted with hexamethylene diisocyanate. Then, carboxymethyl cellulose which was modified with the hexamethylenediamine (mCMC) as a shell was coated and reacted simultaneously on MNP-grafted hexamethylene diisocyanate to form a polymeric core–shell (MNP/mCMC). The structural, morphological, thermal, and magnetic properties of the synthesized magnetite nanocomposite were confirmed by Fourier transform infrared spectrophotometer, thermal gravimetric analysis, X-ray diffraction, vibrating sample magnetometer, and scanning electron microscopy. The size of the resulting MNP/mCMC was approximately between 70 and 120 nm. Doxorubicin (DOX) as a model anticancer drug was used. The in vitro release of DOX from the MNP/mCMC was investigated and indicated that the release speed of the DOX could be well controlled. Release profiles of the DOX and its loading capacity were determined by ultraviolet–visible spectroscopy absorption measurement at λ max 483 nm. The obtained results suggest that the prepared magnetite nanocomposite would be beneficial as a targeted anti-tumor drug carrier for pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim BYS, Rutka JT, Chan WCW (2010) Current concepts: nanomedicine. N Engl J Med 363:2434–2443. doi:10.1056/NEJMra0912273

    Article  CAS  Google Scholar 

  2. Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide NPs for targeted cancer therapy. Biomaterials 31:3694–3706. doi:10.1016/j.biomaterials.2010.01.057

    Article  CAS  Google Scholar 

  3. Park JH, Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635. doi:10.1002/adma.200800004

    Article  CAS  Google Scholar 

  4. Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromol 4:1564–1571. doi:10.1021/bm0341834

    Article  CAS  Google Scholar 

  5. Thierry B, Kujawa P, Tkaczyk C, Winnik FM, Bilodeau L, Tabrizian M (2005) Delivery platform for hydrophobic drugs: prodrug approach combined with self-assembled multilayers. J Am Chem Soc 127:1626–1627. doi:10.1021/ja045077s

    Article  CAS  Google Scholar 

  6. Subbiahdoss G, Sharifi S, Grijpma DW, Laurent S, Mei HC, Mahmoudi M, Busscher HJ (2012) Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater 8:2047–2055. doi:10.1016/j.actbio.2012.03.002

    Article  CAS  Google Scholar 

  7. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906. doi:10.1021/la0008636

    Article  CAS  Google Scholar 

  8. Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76:1316–1321. doi:10.1021/ac034920m

    Article  CAS  Google Scholar 

  9. Saebo KB, Bjornerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM (2004) Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res 316:315–323. doi:10.1007/s00441-004-0884-8

    Article  Google Scholar 

  10. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46. doi:10.1016/j.addr.2010.05.006

    Article  CAS  Google Scholar 

  11. Polyak B, Friedman G (2009) Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv 6:53–70. doi:10.1517/17425240802662795

    Article  CAS  Google Scholar 

  12. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480. doi:10.1038/nrc2394

    Article  CAS  Google Scholar 

  13. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60. doi:10.1002/ddr.20067

    Article  CAS  Google Scholar 

  14. Fang C, Zhang MQ (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19:6258–6266. doi:10.1039/B902182E

    Article  CAS  Google Scholar 

  15. McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167. doi:10.2217/17435889.2.2.153

    Article  CAS  Google Scholar 

  16. Hałupka-Bryla M, Asai K, Thangavel S, Bednarowicz M, Krzyminiewski R, Nagasaki Y (2014) Synthesis and in vitro and in vivo evaluations of poly (ethyleneglycol)-block-poly (4-vinylbenzylphosphonate) magnetic nanoparticles containing doxorubicin as a potential targeted drug delivery system. Colloids Surf B 118:140–147. doi:10.1016/j.colsurfb.2014.03.025

    Article  Google Scholar 

  17. Nahar K, Absar S, Patel B, Ahsan F (2014) Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm 464:185–195. doi:10.1016/j.ijpharm.2014.01.007

    Article  CAS  Google Scholar 

  18. Oprea AM, Ciolacu D, Neamtu A, Mungiu OC, Stoica B, Vasile C (2010) Cellulose/chondroitin sulfate hydrogels: synthesis, drug loading/release properties and biocompatibility. Cellulose Chem Technol 44:369–378

    CAS  Google Scholar 

  19. Unsoy G, Khodadust R, Yalcin S, Mutlu P, Ufuk Gunduz U (2014) Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250. doi:10.1016/j.ejps.2014.05.021

    Article  CAS  Google Scholar 

  20. Likhitkar S, Bajpai AK (2012) Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydr Polym 87:300–308. doi:10.1016/j.carbpol.2011.07.053

    Article  CAS  Google Scholar 

  21. Pilapong C, Sitthichai S, Thongtem S, Thongtem T (2014) Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm 473:469–474. doi:10.1016/j.ijpharm.2014.07.036

    Article  CAS  Google Scholar 

  22. Barbucci R, Giani G, Fedi S, Bottari S, Casolaro M (2012) Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery. Acta Biomater 8:4244–4252. doi:10.1016/j.actbio.2012.09.006

    Article  CAS  Google Scholar 

  23. Movagharnezhad N, Najafi Moghadam P (2016) Folate-decorated carboxymethyl cellulose for controlled doxorubicin delivery. Colloid Polym Sci 294:199–206. doi:10.1007/s00396-015-3768-4

    Article  CAS  Google Scholar 

  24. Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a Review. Am J Agric Biol Sci 3:299–314. doi:10.3844/ajabssp.2008.299.314

    Article  Google Scholar 

  25. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221. doi:10.1021/es0705543

    Article  CAS  Google Scholar 

  26. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545. doi:10.1007/s10570-013-9973-8

    Article  CAS  Google Scholar 

  27. Wang W, Wang F (2014) Novel functional material carboxymethyl cellulose lithium (CMC-Li) enhanced performance of lithium-ion batteries. R Soc Chem Adv 4:24859–24862. doi:10.1039/C4RA01351D

    Google Scholar 

  28. Qiu L, Shao Z, Wang D, Wang F, Wang W, Wang J (2014) Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries. Cellulose 24:2789–2796. doi:10.1007/s10570-014-0274-7

    Article  Google Scholar 

  29. Buzzi V, Brudner M, Wagner TM, Bazzo GC, Pezzin APT, Silva DAK (2013) Caboxymethylcellulose/gelatin blends loaded with piroxicam: preparation, characterization and evaluation of in vitro release profile. J Encap Ads Sci 3:99–107. doi:10.4236/jeas.2013.34012

    Google Scholar 

  30. Sun S, Anders S, Hamann HG, Thiele JU, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD (2002) Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc 124:2884–2885. doi:10.1021/ja0176503

    Article  CAS  Google Scholar 

  31. Kondo A, Fukuda H (1999) Preparation of thermo-sensitive magnetic microspheres and their application to bioprocesses. Colloids Surf A 153:435–438. doi:10.1016/S0927-7757(98)00465-8

    Article  CAS  Google Scholar 

  32. Lowe AB, Sumerlin BS, Donovan MS, Mccormick CL (2002) Facile preparation of transition metal nanoparticles stabilized by well-defined (co) polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J Am Chem Soc 124:11562–11563. doi:10.1021/ja020556h

    Article  CAS  Google Scholar 

  33. Ohno K, Koh KM, Tsujii Y, Fukuda T (2002) Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules 35:8989–8993. doi:10.1021/ma0209491

    Article  CAS  Google Scholar 

  34. Zhou ZH, Xue JM, Wang J, Chan HSO, Yu T (2002) NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. J Appl Phys 91:6015–6020. doi:10.1063/1.1462853

    Article  CAS  Google Scholar 

  35. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37. doi:10.1007/BF03245856

    Article  CAS  Google Scholar 

  36. Galeotti F, Bertini F, Scavia G, Bolognesi A (2011) A controlled approach to iron oxide nanoparticles functionalization for magnetic polymer brushes. J Colloid Interface Sci 360:540–547. doi:10.1016/j.jcis.2011.04.076

    Article  CAS  Google Scholar 

  37. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumors. Int J Hyperth 11:211–216. doi:10.3109/02656739509022457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Najafi Moghadam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movagharnezhad, N., Moghadam, P.N. Hexamethylene diamine/carboxymethyl cellulose grafted on magnetic nanoparticles for controlled drug delivery. Polym. Bull. 74, 4645–4658 (2017). https://doi.org/10.1007/s00289-017-1980-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1980-8

Keywords

Navigation