Skip to main content
Log in

High thermal conductivity and low absorptivity/ emissivity properties of transparent fluorinated polyimide films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyimide film materials are a very promising and high-performance polymer in space application. However, the deep coloration of conventional polyimide films greatly limits the wide use in areas where transparency and low solar absorptance are the essential requirement. Here, we prepared the transparent polyimide from 4,4\(^{\prime }\)-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and different ratios of 2,2\(^{\prime }\)-bis(trifluoromethyl)-benzidine (TFB) and 2,2-bis(4-(4-aminophenoxy)-phenyl) hexafluoropropane (BAPP) with a low solar absorptance. Properties, such glass-transition temperature, thermal decomposition temperature, thermal conductivity and transmittance, were investigated, It is suggested that the introduction of fluorine into polyimide will significantly increase transmittance and in turn decrease solar absorptance, The polyimide film with fluorinated groups exhibited superior optical transparency, low absorptivity/emissivity, high thermal conductivity, and good resistance to ultraviolet radiation. The transparent polyimide exhibits a low solar absorptivity of 0.04 and infrared emissivity of 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Choi IH, Sohn B, Chang JH (2010) Synthesis and characterization of transparent copolyimide films containing CF\(_3\) groups: comparison with copolyimide nanocomposites. Appl Clay Sci 48:117–126

    Article  CAS  Google Scholar 

  2. Yang CY, Hsu SLC, Chen JS (2005) Synthesis and properties of 6FDA-BisAAF-PPD copolyimides for microelectronic applications. J Appl Polym Sci 98:2064–2069

    Article  CAS  Google Scholar 

  3. Choi CH, Sohn BH, Chang JH (2013) Colorless and transparent polyimide nanocomposites: comparison of the properties of homo- and co-polymers. J Ind Eng Chem 19:1593–1599

    Article  CAS  Google Scholar 

  4. Watson KA, Palmieri FL, Connell JW (2002) Space environmentally stable polyimides and copolyimides derived from [2,4-bis (3-aminophenoxy) phenyl] diphenylphosphine oxide. Macromolecules 35:4968–4974

    Article  CAS  Google Scholar 

  5. Min U, Chang JH (2011) Colorless and transparent polyimide nanocomposite films containing organoclay. J Nanosci Nanotechnol 11:6404–6409

    Article  CAS  Google Scholar 

  6. Liaw DJ, Hsu PN, Chen WH, Lin SL (2002) High glass transitions of new polyamides, polyimides, and poly (amide-imide)s containing a triphenylamine group: synthesis and characterization. Macromolecules 35:4669–4676

    Article  CAS  Google Scholar 

  7. Ando S (2004) Optical properties of fluorinated polyimides and their applications to optical components and waveguide circuits. J Photopolym Sci Technol 17:219–232

    Article  CAS  Google Scholar 

  8. Ando S, Watanabe Y, Matsuura T (2002) Wavelength dependence of refractive indices of polyimides in visible and near-IR regions. Jpn J Appl Phys 41:5254

    Article  CAS  Google Scholar 

  9. Matsuura T, Hasuda Y, Nishi S, Yamada N (1991) Polyimide derived from 2,2’-bis (trifluoromethyl)-4,4’-diaminobiphenyl.1. synthesis and characterization of polyimides prepared with 2,2’-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride or pyromellitic dianhydride. Macromolecules 24:5001–5005

    Article  CAS  Google Scholar 

  10. Ju CH, Kim JC, Chang JH (2007) Synthesis and characterization of colorless polyimide nanocomposite films. J Appl Polym Sci 106:4192–4201

    Article  CAS  Google Scholar 

  11. Jin HS, Chang JH (2008) Colorless copolyimide films: thermo-mechanical properties, morphology, and optical transparency. Polym Korea 32:256–262

    CAS  Google Scholar 

  12. Smith JG, Watson KA, Thompson CM, Connell JW (2002) Carbon nanotube/space durable polymer nanocomposite films for electrostatic charge dissipation. ICASE Report No. 2002-34, NASA Langley Research Center, Hampton

  13. Landis AL, Naselow AB (1987) Method of preparing high molecular weight polyimide, product and use. US Patent 4,645,824

  14. Shimazaki K, Imaizumi M, Kibe K (2008) SiO\(_2\) and Al\(_2\)O\(_3\)/SiO\(_2\) coatings for increasing emissivity of Cu(In, Ga)Se\(_2\) thin-film solar cells for space applications. Thin Solid Films 516:2218–2224

    Article  CAS  Google Scholar 

  15. Wang XL, Li YF, Gong CL, Ma T, Yang FC (2008) Synthesis and properties of new pyridine-bridged poly (ether-imide) s based on 4-(4-trifluoromethylphenyl)-2, 6-bis [4-(4-aminophenoxy) phenyl] pyridine. J Fluor Chem 129:56–63

    Article  CAS  Google Scholar 

  16. Park JS, Chang JH (2008) Synthesis and characterization of transparent copolyimide films (I). Polym Korea 32:580–586

    CAS  Google Scholar 

  17. Wang HW, Dong RX, Chu HC, Chang KC, Lee WC (2005) Improvements on the synthesis and properties of fluorinated polyimide-clay nanocomposites by using double-swelling agents. Mater Chem Phys 94:42–51

    Article  CAS  Google Scholar 

  18. Jenkins C (2001) Gossamer spacecraft: membrane and inflatable structures technology for space applications, vol 191. American Institute of Aeronautics and Astronautics

  19. Tomczak SJ, Wright ME, Guenthner AJ, Pettys BJ, Brunsvold AL, Knight C, Minton TK, Vij V, McGrath LM, Mabry JM (2008) Space survivability of main-chain and side-chain POSS-Kapton polyimides. Technical Report DTIC Document

  20. Bae HJ, Kim YS, Chang JH (2014) Colorless and transparent copolyimide nanocomposites. J Nanosci Nanotechnol 14:9644–9652

    Article  CAS  Google Scholar 

  21. Yang CP, Chen RS, Chen KH (2003) Effects of diamines and their fluorinated groups on the color lightness and preparation of organosoluble aromatic polyimides from 2, 2-bis [4-(4-amino-2-trifluoromethylphenoxy) phenyl]-hexafluoropropane. J Polym Sci Part A Polym Chem 41:922–938

    Article  CAS  Google Scholar 

  22. Chen W, Ji M, Yang SY (2016) High thermal stable polyimide resins derived from phenylethynyl-endcapped fluorenyl oligoimides with low melt viscosities. Chin J Polym Sci 34:933–948

    Article  CAS  Google Scholar 

  23. Li BM, Wu ZY, Lin L (2016) Structure, thermal stability, electrochemical behaviors, and mechanical properties of organosoluble polyimide with pyrimidine ring in the main chain. J Appl Polym Sci 133:43680

    Google Scholar 

  24. Sadhasivam B, Muthusamy S (2016) Thermal and dielectric properties of newly developed L-tryptophan-based optically active polyimide and its POSS nanocomposites. J Appl Polym Sci 19:236–247

    CAS  Google Scholar 

  25. Yu W, Xie H, Chen L, Zhao J, Li F (2015) Modified graphene papers with alkaline earth metal ions endowed with high heat transfer properties. Thin Solid Films 579:77–82

    Article  Google Scholar 

  26. Kim GH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737

    Article  Google Scholar 

  27. Sato K, Horibe H, Shirai T, Hotta Y, Nakano H, Nagai H, Mitsuishi K, Watari K (2010) Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J Mater Chem 20:2749–2752

    Article  CAS  Google Scholar 

  28. Li TL, Hsu SLC (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride. J Phys Chem B 114:6825–6829

    Article  CAS  Google Scholar 

  29. Kim GH, Lee D, Shanker Apoorv, Shao L, Min SK, Gidley D, Pipe KP (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14:295–300

    Article  CAS  Google Scholar 

  30. Tachikawa S, Ohnishi A (2010) Preliminary design and test results of a new flexible thermal control mirror. In: 40th international conference on environmental systems, p 6263

  31. Schuler P, Mojazza HB, Haghighat R (2000) Atomic oxygen resistant films for multi-layer insulation. High Perform Polym 12:113–123

    Article  CAS  Google Scholar 

  32. Verker R, Grossman E, Gouzman I, Eliaz N (2008) POSS-polyimide nanocomposite films: simulated hypervelocity space debris and atomic oxygen effects. High Perform Polym 20:475–491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (Grant No. 51406086, 51590903), the Natural Science Foundation of Jiangsu Province (No. BK20140783), the Six Talent Peaks Project in Jiangsu Province (No. XNY-031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desong Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xls 267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Fan, X., Fan, D. et al. High thermal conductivity and low absorptivity/ emissivity properties of transparent fluorinated polyimide films. Polym. Bull. 74, 4561–4575 (2017). https://doi.org/10.1007/s00289-017-1974-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1974-6

Keywords

Navigation