Skip to main content
Log in

Combining control of branching and sulfonation in one-pot synthesis of random sulfonated polyarylethersulfones: effects on thermal stability and water retention

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In functional polymers with tunable hydrophilic behaviour like sulfonated polyarylethersulfone (SPES) high ionic conductance can be obtained directly by increasing the concentration of sulfonic moieties along the macromolecular chain. This, however, often comes to the cost of excessive water sorption, which can lead to membrane rupture and consequent device failure. To overcome this drawback, and to reconcile high hydrophilicity with the high mechanical properties of aromatic polymers, we propose the use of SPES copolymers with a low degree of branching. A series of branched SPES was synthesized using homogeneous (one-pot) copolymerization by replacing an amount up to 0.9% mol of the difunctional monomer 4,4′-dihydroxydiphenyl with the trifunctional 1,3,5-trihydroxybenzene (THB). The polymers were characterized by 1H-NMR spectroscopy, intrinsic viscosity, water sorption measurements, thermogravimetric analysis and differential scanning calorimetry. Like linear SPES, branched SPES is totally amorphous and soluble in polar aprotic solvents, lending itself to easy fabrication of membranes and coatings. Besides reducing the water sorption and in-plane swelling of SPES membranes upon equilibration in liquid, branching also improves the retention of water in swollen membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harrison WL, Wang F, Mecham JB, Bhanu Va, Hill M, Kim YS, McGrath JE (2003) Influence of the bisphenol structure on the direct synthesis of sulfonated poly (arylene ether) copolymers. I. J Polym Sci Part A Polym Chem 41(14):2264

    Article  CAS  Google Scholar 

  2. Johnson BC, Yilgor I, Tran C, Iqbal M, Wightman JP, Lloyd DR, McGrath JEJ (1984) Synthesis and characterization of sulfonated poly (acrylene ether sulfones). Polym Sci Part A 22:721

    CAS  Google Scholar 

  3. Deping L, Hua Z, Rong G, Hua D, Li L (2005) Fuel Cell Membranes, Electrode Binders, and MEA Performance. Polym Bull 54(2):21

    Google Scholar 

  4. Chikashige Y, Chikyu Y, Miyatake K, Watanabe M (2006) Branched and cross‐Linked proton conductive poly (arylene ether sulfone) Ionomers: synthesis and Properties. Macromol Chem Phys 207(15):1334

    Article  CAS  Google Scholar 

  5. Sabatini V, Checchia S, Farina H (2016) Homogeneous synthesis and characterization of sulfonated polyarylethersulfones having low degree of sulfonation and highly hydrophilic behavior. Macromol Res 24(9):1

    Article  Google Scholar 

  6. Carbone A, Pedicini R, Portale G, Longo A, D’Ilario L, Passalacqua E (2006) Sulphonated poly (ether ether ketone) membranes for fuel cell application: thermal and structural characterisation. J Power Sour 163(1):18

    Article  CAS  Google Scholar 

  7. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29

    Article  CAS  Google Scholar 

  8. Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160 °C). J Membr Sci 185(1):73

    Article  CAS  Google Scholar 

  9. Donnadio A, Casciola M, Di Vona ML, Tamilvanan M (2012) Conductivity and hydration of sulfonated polyethersulfone in the range 70–120 °C: effect of temperature and relative humidity cycling. J Power Sour 205:145

    Article  CAS  Google Scholar 

  10. Di Vona ML, Sgreccia E, Tamilvanan M, Khadhraoui M, Chassigneux P, Knauth P (2010) High ionic exchange capacity polyphenylsulfone (SPPSU) and polyethersulfone (SPES) cross-linked by annealing treatment: Thermal stability, hydration level and mechanical properties. J Membr Sci 354:134

    Article  Google Scholar 

  11. Bae B, Miyatake K, Uchida M, Uchida H, Sakiyama Y, Okanishi T, Watanabe M (2011) Sulfonated poly (arylene ether sulfone ketone) multiblock copolymers with highly sulfonated blocks. Long-term fuel cell operation and post-test analyses. ACS Appl Mater Interfaces 3(7):2786

    Article  CAS  Google Scholar 

  12. Falciola L, Checchia S, Pifferi V, Farina H, Ortenzi MA, Sabatini V (2016) Electrodes modified with sulphonated poly (aryl ether sulphone): effect of casting conditions on their enhanced electroanalytical performance. Electrochem Acta 8(194):405

    Article  Google Scholar 

  13. Soliveri G, Sabatini V, Farina H, Ortenzi MA, Meroni D, Colombo A (2015) Double side self-cleaning polymeric materials: the hydrophobic and photoactive approach. Colloids Surf A Physicochem Eng Asp 483:285

    Article  CAS  Google Scholar 

  14. Ulbricht M, Schuster O, Ansorge W, Ruetering M, Steiger P (2007) Sep Purif Technol 57(1):63

    Article  CAS  Google Scholar 

  15. Rao AHN, Nam S, Kim T-H (2014) Crosslinked poly(arylene ether sulfone) block copolymers containing pendant imidazolium groups as both crosslinkage sites and hydroxide conductors for highly selective and stable membranes. Int J Hydrogen Energy 39(11):5919

    Article  CAS  Google Scholar 

  16. Na T, Shao K, Zhu J, Sun H, Xu D, Zhang Z, Lew CM (2013) Composite membranes based on fully sulfonated poly (aryl ether ketone)/epoxy resin/different curing agents for direct methanol fuel cells. J Power Sour 230:290

    Article  CAS  Google Scholar 

  17. Kim DS, Robertson GP, Guiver MD (2008) Comb-shaped poly (arylene ether sulfone) s as proton exchange membranes. Macromol 41(6):2126

    Article  CAS  Google Scholar 

  18. Zhao CH, Gong Y, Liu QL, Zhang QG, Zhu AM (2012) Self-crosslinked anion exchange membranes by bromination of benzylmethyl-containing poly (sulfone) s for direct methanol fuel cells. Int J Hydrogen Energy 37(15):11383

    Article  CAS  Google Scholar 

  19. Liu B, Hu W, Robertson GP, Guiver MD (2008) Poly (aryl ether ketone) s with carboxylic acid groups: synthesis, sulfonation and crosslinking. J Mater Chem 18(39):4675

    Article  CAS  Google Scholar 

  20. Kim YH, Webster OW (1992) Hyperbranched polyphenylenes. Macromol 25:5561

    Article  CAS  Google Scholar 

  21. Jeon I, Tan L, Baek J (2006) Self-controlled synthesis of hyperbranched poly (ether ketone) s from A3+ B2 approach via different solubilities of monomers in the reaction medium. Macromol 39(26):9057

    Article  Google Scholar 

  22. Himmelberg P, Fossum E (2005) Effect of reaction conditions on the molecular weight and polydispersity of linear poly (arylene ether phosphine oxide) s prepared from an AB monomer. J Polym Sci Part A Polym Chem 43(14):3178

    Article  CAS  Google Scholar 

  23. Kricheldorf HR, Fritsch D, Vakhtangishvili L, Schwarz G (2003) Multicyclic poly (ether sulfone) s of phloroglucinol forming branched and cross-linked architectures. Macromol 36:4337

    Article  CAS  Google Scholar 

  24. Banerjee S, Komber H, Häußler L, Voit B (2009) Synthesis and characterization of hyperbranched poly (arylene ether) s from a new activated trifluoro B3 monomer adopting an A2+ B3 approach. Macromol Chem Phys 210:1272–1282

    Article  CAS  Google Scholar 

  25. Johnson RN, Farnham AG, Clendinning RA, Hale WF, Merriam CNJ (1967) Poly (aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties. J Polym Sci Part A Polym Chem 5:2375

    Article  CAS  Google Scholar 

  26. Attwood TE, Newton A, Rose JB (1972) Kinetic investigation of the synthesis of a Polyethersulfone. Br Polym J 391–399

  27. Samperi F, Battiato S, Puglisi C, Asarisi V, Recca A, Cicala G, Mendichi RJ (2010) Synthesis and characterization of sulfonated copolyethersulfones. J Polym Sci Chem Part A Polym 48(14):3010

    Article  CAS  Google Scholar 

  28. Kopitzke RW, Linkous CA, Nelson GL (2000) Thermal stability of high temperature polymers and their sulfonated derivatives under inert and saturated vapor conditions. Polym Degrad Stab 67:335

    Article  CAS  Google Scholar 

  29. Montaudo G, Puglisi C, Rapisardi R, Samperi F (1994) Primary thermal degradation processes of poly (ether‐sulfone) and poly (phenylene oxide) investigated by direct pyrolysis‐mass spectrometry. Macromol Chem Phys 195:1225–1239

    Article  CAS  Google Scholar 

  30. Jutemar EP, Jannasch P (2010) Influence of the polymer backbone structure on the properties of aromatic ionomers with pendant sulfobenzoyl side chains for use as proton-exchange membranes. ACS Appl Mater Interfaces 2(12):3718

    Article  CAS  Google Scholar 

  31. Abate L, Blanco I, Cicala G, Mamo A, Recca G, Scamporrino A (2010) The influence of chain rigidity on the thermal properties of some novel random copolyethersulfones. Polym Degrad Stab 95(5):798

    Article  CAS  Google Scholar 

  32. Weber AZ, Newman J (2007) Chapter Two-“macroscopic modeling of polymer-electrolyte membranes. Adv Fuel Cells 1:47

    Article  CAS  Google Scholar 

  33. Kim YS, Dong L, Hickner MA, Glass TE, Webb V, Mcgrath JE (2003) Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance. Macromol 36(17):17

    Article  Google Scholar 

  34. Marx D (2006) Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations. Chem Phys Chem 7:1848

    Article  CAS  Google Scholar 

  35. Parrinello M (1999) The nature of the hydrated excess proton in water. Nature 397:601

    Article  Google Scholar 

  36. Kreuer KD, Paddison S (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology”. Chem Rev 104:4637–4678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondazione Cariplo under the Project 2010-0588 [“Non-Fluorinated polymeric membranes and platinum-free catalytic systems for Fuel Cells (PEMFCs) with low cost and high efficiency”]. The authors wish to thank Professor G. Di Silvestro for stimulating discussion and scientific projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ortenzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Checchia, S., Sabatini, V., Farina, H. et al. Combining control of branching and sulfonation in one-pot synthesis of random sulfonated polyarylethersulfones: effects on thermal stability and water retention. Polym. Bull. 74, 3939–3954 (2017). https://doi.org/10.1007/s00289-017-1933-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1933-2

Keywords

Navigation