Skip to main content
Log in

Synthesis and application of fluorinated α-diimine nickel catalyst for ethylene polymerization: deactivation mechanism

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A fluorinated LTM catalyst of [bis(N,N′-2-fluorophenylimino)acenaphthene] nickel(ΙΙ) dibromide was prepared and applied for ethylene polymerization. We established a reasonable hypothesis, highlighting the role of fluorine in ligand structure. In addition, density functional theory (DFT) studies have been applied to strengthen our propositions. DFT calculations of the β-agostic cationic species at room temperature and 75 °C suggest that the β-agostic structure for the latter was destabilized by 19 eV which rendered it less prone to β-H transfer reactions than the species at room temperature. In addition, a mechanism for the catalyst deactivation for fluorinated α-diimine nickel based catalysts has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kaminsky W (2008) Trends in polyolefin chemistry. Macromol Chem Phys 209:459–466

    Article  CAS  Google Scholar 

  2. Tuchbreiter A, Mülhaupt R (2001) The polyolefin challenges: catalyst and process design, tailor-made materials, high-throughput development and data mining. Macromol Symp 173:1–20

    Article  CAS  Google Scholar 

  3. Ahmadjo S (2016) Preparation of ultra high molecular weight amorphous poly(1-hexene) by a Ziegler–Natta catalyst. Polym Adv Technol 27:1523–1529

    Article  CAS  Google Scholar 

  4. Coates GW (2000) Control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev 100:1223–1252

    Article  CAS  Google Scholar 

  5. Hoff R, Mathers RT (2010) Handbook of transition metal polymerization catalyst. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Britovsek GJP, Gibson VC, Wass DF (1999) The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed 38:428–477

    Article  CAS  Google Scholar 

  7. Busico V (2007) Catalytic olefin polymerization is a mature field. Isn’t it. Macromol Chem Phys 208:26–29

    Article  CAS  Google Scholar 

  8. Johnson LK, Killian CM, Arthur SD, Feldman J, McCord EF, McLain SJ, Kreutzer K A, Bennett AMA, Coughlin EB, Ittel SD, Parathasarathy A, Tempel DJ, Brookhart M (1996) Pat Appl. WO1996023010, DuPont

  9. Johnson LK, Killian CM, Brookhart M (1995) New Pd (II)- and Ni (II)-based catalysts for polymerization of ethylene and alpha-olefins. J Am Chem Soc 117:6414–6415

    Article  CAS  Google Scholar 

  10. Mecking S (2001) Olefin polymerization by late transition metal complexes. Angew Chem Int Ed 40:534–540

    Article  CAS  Google Scholar 

  11. Peuckert M, Keim W (1983) A new nickel complex for the oligomerization of ethylene. Organomet 2:594–597

    Article  CAS  Google Scholar 

  12. Deng L, Woo TK, Cavallo L, Margl PM, Ziegler T (1997) The role of bulky substituents in brookhart-type Ni(II) diimine catalyzed olefin polymerization: a combined density functional theory and molecular mechanics study. J Am Chem Soc 119:6177–6186

    Article  CAS  Google Scholar 

  13. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100:1169–1204

    Article  CAS  Google Scholar 

  14. Rieger BL, Saunders BL, Kacker S, Striegler S (eds) (2003) Late transition metal polymerization catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  15. Takeuchi D (2010) Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions. Dalton Trans 39:311–328

    Article  CAS  Google Scholar 

  16. Barabanov AA, Semikolenova NV, Bukatov GD, Matsko MA, Zakharov VA (2012) Ethylene polymerization over homogeneous bis(imino)pyridine vanadium catalysts: data on the number and reactivity of active sites. J Polym Res 19:9998–10007

    Article  Google Scholar 

  17. Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium (II) catalysts. J Am Chem Soc 118:267–268

    Article  CAS  Google Scholar 

  18. Camacho DH, Salo EV, Ziller JW, Guan Z (2004) Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization. Angew Chem Int Ed 43:1821–1825

    Article  CAS  Google Scholar 

  19. Wang C, Friedrich S, Younkin TR, Li RT, Grubbs RH, Bansleben DA, Day MW (1998) Neutral nickel(II)-based catalysts for ethylene polymerization. Organomet 17:3149–3151

    Article  CAS  Google Scholar 

  20. Gibson VC, Spitzmesser SK (2003) Advances in non-metallocene olefin polymerization catalysis. Chem Rev 103:283

    Article  CAS  Google Scholar 

  21. George JP, Britovsek SPD, Baugh OH, Vernon CG, Duncan FW, Andrew JPW, Williams D (2003) The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems. Inorg Chim Acta 345:279–291

    Article  Google Scholar 

  22. Mecking S, Johnson LK, Wang L, Brookhart (1998) Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J Am Chem Soc 120:888–889

    Article  CAS  Google Scholar 

  23. Popeney C, Guan Z (2005) Ligand electronic effects on late transition metal polymerization catalysts. Organomet 24:1145–1155

    Article  CAS  Google Scholar 

  24. Helldorfer H, Backhaus J, Alt HG (2003) (α-Diimine) nickel(II) complexes containing chloro substituted ligands as catalyst precursors for the oligomerization and polymerization of ethylene. Inorg Chim Acta 351:34–42

    Article  CAS  Google Scholar 

  25. Khoshsefat M, Zohuri GH, Ramezanian N, Ahmadjo S, Haghpana M (2016) Polymerization of ethylene using a series of binuclear and a mono nuclear Ni(II)-based catalysts. J polym Sci Polym Chem 54:3000–3011

    Article  CAS  Google Scholar 

  26. Zohuri GH, Damavandi S, Dianat E, Sandaroos R, Ahmadjo S (2011) Late transition metal catalyst based on cobalt for polymerization of ethylene. Inter J Polym Mat 60:776–786

    Article  CAS  Google Scholar 

  27. Sandaroos T, Cuenca T, Zohuri GH, Damavandi S, Ahmadjo S (2012) Titanium (IV) and nickel (II) catalysts based on anilinotropone ligands. Chapter10, Polymerization, De Souza Gomes A, InTech publication

  28. Justino T, Dias AR, Ascenso J, Marcues MM, Tait PJT (1997) Polymerization of ethylene using metallocene and aluminoxane systems. Polym Int 44:407–412

    Article  CAS  Google Scholar 

  29. Brandrup J, Immergut EH (1998) Polymer handbook, VII, 3rd edn. Wiley, New York, pp 1–7

    Google Scholar 

  30. Damavandi S, Zohuri GH, Sandaroos R, Ahmadjo S (2012) Novel functionalized bis(imino)pyridine cobalt(II) catalysts for ethylene polymerization. J Polym Res 19:9796–9800

    Article  Google Scholar 

  31. Chen EYX, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerisation: activators, activation processes, and structure-activity relationships. Chem Rev 100:1391–1434

    Article  CAS  Google Scholar 

  32. Chen AP, Gua L, Jie Y (2012) Polymerization of 1, 3-butadiene catalyzed by cobalt (II) and nickel (II) complexes bearing imino-or amino-pyridyl alcohol ligands in combination with ethylaluminum sesquichloride. Organomet Chem 705:51–58

    Article  Google Scholar 

  33. Liu H, Jia X, Wang F, Dai Q, Wang B, Bi J, Zhang C, Zhao L, Bai C, Hu Y, Zhang X (2013) Synthesis of bis(N-arylcarboximidoylchloride)pyridine cobalt(II) complexes and their catalytic behavior for 1,3-butadiene polymerization. Dalton Trans 42:13723–13732

    Article  CAS  Google Scholar 

  34. Ishii SI, Furuyama R, Matsukawa N, Saito J, Mitani M, Tanaka H, Fujita T (2003) Ethylene and ethylene/propylene polymerization behavior of bis(phenoxy-imine) Zr and Hf complexes with perfluorophenyl substituents. Macromol Rapid Commun 24:452–456

    Article  CAS  Google Scholar 

  35. Saito J, Mitani M, Mohri J, Ishii S, Yoshida Y, Matsugi T, Kojoh S, Kashiwa N, Fujita T (2001) Highly syndiospecific living polymerization of propylene using a titanium complex having two phenoxy-imine chelate ligands. Chem Lett 30:576–582

    Article  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone B, Mennucci B, Cossi M, Scalmani G, Rega GA, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Wallingford

    Google Scholar 

  37. Kissin YV, Qian C, Xie G, Chen X (2006) Multi-center nature of ethylene polymerization catalysts based on 2,6-bis(imino)pyridyl complexes of iron and cobalt. J Pol Sci Part A Polym Chem 44:6159–6170

    Article  CAS  Google Scholar 

  38. Zohuri GH, Damavandi S, Sandaroos R, Ahmadjo S (2011) Ethylene polymerization using fluorinated FI Zr-based catalyst. Polym Bull 66:1051

    Article  CAS  Google Scholar 

  39. Zohuri GH, Damavandi S, Sandaroos R, Ahmadjo S (2014) Synthesis of high molecular weight polyethylene using FI catalyst. Polyolefin J 1:25–32

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ferdowsi University of Mashhad for financial support and staff of DSC Lab of Engineering Department of Chemical Engineering Faculty of Ferdowsi University of Mashhad for their kind help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ahmadjo or G. H. Zohuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadjo, S., Damavandi, S., Zohuri, G.H. et al. Synthesis and application of fluorinated α-diimine nickel catalyst for ethylene polymerization: deactivation mechanism. Polym. Bull. 74, 3819–3832 (2017). https://doi.org/10.1007/s00289-017-1924-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1924-3

Keywords

Navigation