Skip to main content

Advertisement

Log in

The effect of the inorganic nanomaterials on the UV-absorption, rheological and mechanical properties of the rapid prototyping epoxy-based composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We here report the photosensitive nanocomposites as the new rapid prototyping materials. The nanocomposites are prepared using the properly surface-modified sepiolite nanofibers, graphene oxide, TiO2 and SiO2 nanoparticles as the reinforcing fillers in the epoxy-based resin. These nanocomposites are investigated about the mechanical properties, viscosity and light absorption. By fitting the rheological test results into the Krieger-Dougherty equation, the influences of the different-shaped fillers on the material viscosity and the maximum packing fraction of the fillers are obtained. The extinction coefficients of the inorganic fillers are obtained using UV–Vis spectroscopy. The mechanical properties of the nanocomposites are improved due to the surface-modified inorganic fillers. It is found that the as-prepared materials are appropriate for stereolithography and digital light processing, with which we succeed in fabricating the dental model of high dimensional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Giannatsis J, Deoussis V (2009) Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol 40:116–127

    Article  Google Scholar 

  2. Wendel B, Rietzel D, Schmachtenberg E et al (2008) Additive processing of polymers. Macromol Mater Eng 293:799–809

    Article  CAS  Google Scholar 

  3. Corcione CE, Striani R, Cannoletta D et al (2015) Organically modified montmorillonite polymer nanocomposites for stereolithography building process. Polym Adv Technol 26:92–98

    Article  Google Scholar 

  4. Salmoria GV, Ahrens CH, Fredel M et al (2005) Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods. Polym Test 24:157–162

    Article  CAS  Google Scholar 

  5. Chiu SH, Pong SH, Lin CH et al (2008) A study of photomask correction method in area-forming rapid prototyping system. Rapid prototyping J 14:285–292

    Article  Google Scholar 

  6. Burdick JA, Peterson AJ, Anseth KS (2001) Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials 22:1779–1786

    Article  CAS  Google Scholar 

  7. Sandoval H, Wicker RB (2006) Functionalizing stereolithography resins: effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyp J 12:292–303

    Article  Google Scholar 

  8. Kumar S, Hofmann M, Weder C et al (2012) Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals. ACS Appl Mater Interfaces 4:5399–5407

    Article  CAS  Google Scholar 

  9. Gurr M, Hofmann D, Mülhaupt R et al (2008) Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and Rapid manufacturing technologies. Adv Funct Mater 18:2390–2397

    Article  CAS  Google Scholar 

  10. Duan Y, Zhou Y, Li D et al (2011) Nano-TiO2-modified photosensitive resin for RP. Rapid prototyping J 17:247–252

    Article  Google Scholar 

  11. Ivanova OS, Williams CB, Campbell TA (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19:353–364

    Article  Google Scholar 

  12. Azari A, Nikzad S (2009) The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J 15:216–225

    Article  Google Scholar 

  13. Martin-Gallego M, Bernal MM, Lopez-Manchado MA et al (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J 49:1347–1353

    Article  CAS  Google Scholar 

  14. Kasgoz A, Akin D, Durmus A et al (2014) Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites. Compos B 66:126–135

    Article  CAS  Google Scholar 

  15. Krieger IM, Dougherty TJ (1959) A mechanism for nonnewtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  16. Marini J, Branciforti MC, Lotti C (2010) Effect of matrix viscosity on the extent of exfoliation in EVA/organoclay nanocomposites. Polym Adv Technol 21:408–417

    CAS  Google Scholar 

  17. Sun L, Boo WJ, Bicerano J et al (2009) Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng 294:103–113

    Article  CAS  Google Scholar 

  18. Kaffashi B, Kaveh A, Jazani OM, Saeb MR (2012) Improving rheological properties of covalently MWCNT/epoxy nanocomposites via surface re-modification. Polym Bull 68:2187–2197

    Article  CAS  Google Scholar 

  19. Uematsu H, Aoki Y, Koyama K et al (2010) Rheology of SiO2/(acrylic polymer/epoxy) suspensions. I. Linear viscoelasticity. Rheol Acta 49:299–304

    Article  CAS  Google Scholar 

  20. Romo-Uribe A, Arcos-Casarrubias JA, Flores A, Valerio-Cárdenas and González AE (2014) Influence of rubber on the curing kinetics of DGEBA epoxy and the effect on the morphology and hardness of the composites. Polym Bull 71:1241–1262

  21. Chartier T, Hinczewski C, Corbel S (1999) UV curable systems for tape casting. J Eur Ceram Soc 19:67–74

    Article  CAS  Google Scholar 

  22. Liu H, Mo J (2010) Study on Nanosilica Reinforced stereolithography resin. J Reinf Plast Compos 29:909–920

    Article  CAS  Google Scholar 

  23. Wang Y, Wang W, Zhang Z et al (2016) Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur Polym J 75:36–45

    Article  CAS  Google Scholar 

  24. Li P, Zheng Y, Li M et al (2016) Enhanced toughness and glass transition temperature of epoxy nanocomposites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide. Mater Des 89:653–659

    Article  CAS  Google Scholar 

  25. Pedrazzoli D, Tuba F, Karger-Kocsis J et al (2014) Mechanical and rheological response of polypropylene/boehmite nanocomposites. J Reinf Plast Compos 33:252–265

    Article  Google Scholar 

  26. Yao XF, Yeh HY, Zhou D, Zhang YH (2006) The structural characterization and properties of SiO2–epoxy nanocomposites. J Compos Mater 40:371–381

    Article  CAS  Google Scholar 

  27. Boon MS, Mariatti M (2014) Silane treatment of magnetite filler and its effect on the properties of magnetite-filled epoxy thin-film composites. Polym Bull 71:3333–3346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Shanghai Committee of Science and Technology, China. [Grant numbers 13DZ1108900, 13DZ1108904].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyuan Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ni, X. The effect of the inorganic nanomaterials on the UV-absorption, rheological and mechanical properties of the rapid prototyping epoxy-based composites. Polym. Bull. 74, 2063–2079 (2017). https://doi.org/10.1007/s00289-016-1825-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1825-x

Keywords

Navigation