Skip to main content
Log in

High-performance bio-based thermosetting bismaleimide resins utilizing difurfurylidenecyclopentanone and dicinnamylidene cyclopentanone

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Difurfurylidenecyclopentanone (DFCPN) and dicinnamylidene cyclopentanone (DCCPN) were synthesized by aldol condensation reactions of cyclopentanone with furfural and cinnamaldehyde, both derived from renewable resources. The DFCPN and DCCPN were prepolymerized with 4,4′-bismaleimidodiphenylmethane (BMI) at 190 °C and then compression molded at 250 °C to produce cured DFCPN/BMI and DCCPN/BMI resins (DFCPN–BMI and DCCPN–BMI) with a molar ratio of 1/1, 1/2 or 1/3. The FT-IR spectral analysis of the cured resins and FD-MS analysis of the model reaction products using N-phenylmaleimide revealed that maleimide-rich addition copolymerization occurred. All of the cured resins except DCCPN–BMI 1/1 exhibited glass transition temperatures higher than 350 °C and 5 % weight loss temperatures higher than 450 °C, and their values increased with increasing BMI content. When cured resins with the same molar ratio were compared, DFCPN–BMI exhibited a higher flexural strength than DCCPN–BMI. Especially, DFCPN–BMI 1/1 exhibited extremely excellent flexural properties and heat resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39

    Article  CAS  Google Scholar 

  2. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39

    Article  CAS  Google Scholar 

  3. Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712

    Article  CAS  Google Scholar 

  4. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. doi:10.1186/2194-0517-2-8

    Article  Google Scholar 

  5. Campanella A, Zhan M, Watt P, Grous AT, Shen C, Wool RP (2015) Triglyceride-based thermosetting resins with different reactive diluents and fiber reinforced composite applications. Compos A 72:192–199

    Article  CAS  Google Scholar 

  6. Ronda JC, Lligadas G, Galià M, Cádiz V (2013) A renewable approach to thermosetting resins. React Funct Polym 73:381–395

    Article  CAS  Google Scholar 

  7. Kim JR, Sharma S (2012) The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind Crop Prod 36:485–499

    Article  CAS  Google Scholar 

  8. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509

    Article  CAS  Google Scholar 

  9. Effendi A, Gerhauser H, Bridgwater AV (2008) Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev 12:2092–2116

    Article  CAS  Google Scholar 

  10. Nair CPR (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29:401–498

    Article  CAS  Google Scholar 

  11. Hopewell JL, George GA, Hill DJT (2000) Quantitative analysis of bismaleimide-diamine thermosets using near infrared spectroscopy. Polymer 41:8221–8229

    Article  CAS  Google Scholar 

  12. Chaplin A, Hamerton I, Herman H, Mudhar AK, Shaw SJ (2000) Studing water uptake effects in resins based on cyanate ester/bismaleimide blends. Polymer 41:3945–3956

    Article  CAS  Google Scholar 

  13. King JJ, Chaudhari M, Zahir S (1984) A new bismaleimide system for high performance applications. 29th SAMPE Symposium, vol 29, pp 392–403

  14. Morgan RJ, Shin EE, Rosenberg B, Jurek A (1997) Characterization of the cure reactions of bismaleimide composite matrices. Polymer 38:639–646

    Article  CAS  Google Scholar 

  15. Rozenberg BA, Dzhavadyan EA, Morgan R, Shin E (2002) High-performance bismaleimide matrices: cure kinetics and mechanism. Polym Adv Technol 13:837–844

    Article  CAS  Google Scholar 

  16. Hirayama K, Irie T, Teramoto N, Shibata M (2009) High performance bio-based thermosetting resins composed of dehydrated castor oil and bismaleimide. J Appl Polym Sci 114:1033–1039

    Article  CAS  Google Scholar 

  17. Shibata M, Teramoto N, Nakamura Y (2011) High performance bio-based thermosetting resins composed of tung oil and bismaleimide. J Appl Polym Sci 119:896–901

    Article  CAS  Google Scholar 

  18. Jiménez-Gómez CP, Cecilia JA, Durán-Martín D, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Mariscal R, Maireles-Torres P (2016) Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. J Catal 336:107–115

    Article  Google Scholar 

  19. Jeon W, Ban C, Park G, Woo HC, Kim DH (2016) Hydrothermal conversion of alginic acid to furfural catalyzed by Cu(II)ion. Catal Today 265:154–162

    Article  CAS  Google Scholar 

  20. Kaiprommarat S, Kongparakul S, Reubroycharoen P, Guan G, Samart C (2016) Highly efficient sulfonic MCM-41 catalyst for furfural production: furan-based biofuel agent. Fuel 174:189–196

    Article  CAS  Google Scholar 

  21. Zhang T, Li W, Xu Z, Liu Q, Ma Q, Jameel H, Chang H, Ma L (2016) Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone. Bioresour Technol 209:108–114

    Article  CAS  Google Scholar 

  22. Hronec M, Fulajtarová K (2012) Selective transformation of furfural to cyclopentanone. Catal Commun 24:100–104

    Article  CAS  Google Scholar 

  23. Hronec M, Fulajtarová K, Liptaj T (2012) Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone. Appl Catal A 437–438:104–111

    Article  Google Scholar 

  24. Yang Y, Du Z, Huang Y, Lu H, Wang F, Gao J, Jie X (2013) Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chem 15:1932–1940

    Article  CAS  Google Scholar 

  25. Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T (2014) Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose Chem Commun 50:2572–2574

    CAS  Google Scholar 

  26. Singh G, Maurya S, deLampasona MP, Catalan CAN (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 45:1650–1661

    Article  CAS  Google Scholar 

  27. Zheng M, Wang L, Shao J, Zhong Q (1997) A facile synthesis of α, α′-bis(substituted benzylidene)cycloalkanones catalyzed by bis(p-ethoxypehnyl)telluroxide(bmpto) under microwave irradiation. Synth Commun 27:351–354

    Article  CAS  Google Scholar 

  28. Ma SY, Zheng ZB (2009) (2E,5E)-2,5-Difurfurylidenecyclopentanone. Acta Crystallogr Sect E Struct Rep Online 65:3084

    Article  Google Scholar 

  29. Zare A, Merajoddin M, Hasaninejad A, Moosavi-Zare AR, Khakyzadeh V (2013) Study of in situ generation of carbocationic system from trityl chloride (Ph3CCl) which efficiently catalyzed cross-aldol condensation reaction. C R Chim 16:380–384

    Article  CAS  Google Scholar 

  30. Yi WB, Cai C (2005) Aldol condensations of aldehydes and ketones catalyzed by rare earth(III) perfluorooctane sulfonates in fluorous solvents. J Fluorine Chem 126:1553–1558

    Article  CAS  Google Scholar 

  31. Gandini A (2013) The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog Polym Sci 38:1–29

    Article  CAS  Google Scholar 

  32. Ozawa Y, Shibata M (2014) Biobased thermosetting resins composed of l-lysine methyl ester and bismaleimide. J Appl Polym Sci. doi:10.1002/app.40379

    Google Scholar 

  33. Froidevaux V, Borne M, Laborbe E, Auvergne R, Gandini A, Boutevin B (2015) Study of the Diels–Alder and retro-Diels–Alder reaction between furan derivatives and maleimide for the creation of new materials. RSC Adv 5:37742–37754

    Article  CAS  Google Scholar 

  34. Boutelle BC, Northrop BH (2011) Substituent effects on the reversibility of furan-maleimide cycloadditions. J Org Chem 76:7994–8002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Chiba Institute of Technology. We thank Dr. Naozumi Teramoto and Dr. Toshiaki Shimasaki of our department for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibata.

Electronic supplementary material

FT-IR and 1H NMR spectra of DFCPN–PMIs and DCCPN–PMIs are available from electric supplementary material.

Supplementary material 1 (DOCX 584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, M., Miyazawa, E. High-performance bio-based thermosetting bismaleimide resins utilizing difurfurylidenecyclopentanone and dicinnamylidene cyclopentanone. Polym. Bull. 74, 1949–1963 (2017). https://doi.org/10.1007/s00289-016-1815-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1815-z

Keywords

Navigation