Skip to main content

Advertisement

Log in

Analytical interpretation of mechanical response of green biocomposites based on poly(ε-caprolactone) and granular tapioca starch

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work focuses on thermal, mechanical, and morphological properties of poly(ε-caprolactone) (PCL) on incorporation of granular tapioca starch (GTS). Biocomposites containing 0–35 wt% (Φf = 0–0.36) of the dispersed GTS phase were prepared by melt compounding in a twin screw extruder followed by microinjection molding. From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The observed marginal decrease in onset degradation temperature suggests that the incorporation of GTS does not compromise thermal stability in PCL/GTS biocomposites. The maximum tensile modulus observed at Φf = 0.36 was 225.8 MPa, while a decrease in tensile yield strength with the value 12.44 MPa was observed. After eliminating the effect of crystallinity, these biocomposites showed ~4 times increase in tensile modulus and ~2 times increase in yield strength, whereas the impact properties decreased by 59 %. The enhancement in Young’s modulus was due to the mechanical restraint created by GTS particles which tend to decrease notched Izod impact strength by enhancing the stiffness of PCL. From SEM micrographs, homogeneous dispersion of GTS particles was observed in PCL matrix. Theoretical models were used to analyze tensile modulus and yield strength data for the estimation of various phase-adhesion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ishiaku U, Pang K, Lee W, Ishak ZM (2002) Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly (ε-caprolactone). Eur Polymer J 38(2):393–401

    Article  CAS  Google Scholar 

  2. Avella M, Errico ME, Laurienzo P, Martuscelli E, Raimo M, Rimedio R (2000) Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymer 41(10):3875–3881

    Article  CAS  Google Scholar 

  3. Salgado CL, Sanchez E, Mano J, Moraes A (2012) Characterization of chitosan and polycaprolactone membranes designed for wound repair application. J Mater Sci 47(2):659–667

    Article  CAS  Google Scholar 

  4. She H, Xiao X, Liu R (2007) Preparation and characterization of polycaprolactone–chitosan composites for tissue engineering applications. J Mater Sci 42(19):8113–8119

    Article  CAS  Google Scholar 

  5. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P (2005) Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976

    Article  CAS  Google Scholar 

  6. Ma X, Yu J, Zhao A (2006) Properties of biodegradable poly(propylene carbonate)/starch composites with succinic anhydride. Compos Sci Technol 66(13):2360–2366

    Article  CAS  Google Scholar 

  7. Yu F, Prashantha K, Soulestin J, Lacrampe M-F, Krawczak P (2013) Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydr Polym 91(1):253–261

    Article  CAS  Google Scholar 

  8. Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41(11):4157–4167

    Article  CAS  Google Scholar 

  9. Al-Mulla EAJ, Yunus WMZW, Ibrahim NAB, Rahman MZA (2010) Properties of epoxidized palm oil plasticized polytlactic acid. J Mater Sci 45(7):1942–1946

    Article  CAS  Google Scholar 

  10. Avérous L, Fringant C (2001) Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems. Polym Eng Sci 41(5):727–734

    Article  Google Scholar 

  11. Sewda K, Maiti SN (2010) Crystallization and melting behavior of HDPE in HDPE/teak wood flour composites and their correlation with mechanical properties. J Appl Polym Sci 118(4):2264–2275

    CAS  Google Scholar 

  12. Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C (2002) Processing and characterization of LDPE/starch/PCL blends. Eur Polym J 38(9):1713–1720

    Article  CAS  Google Scholar 

  13. Rosa DS, Guedes CGF, Pedroso AG, Calil MR (2004) The influence of starch gelatinization on the rheological, thermal, and morphological properties of poly(ɛ-caprolactone) with corn starch blends. Mater Sci Eng C 24(5):663–670

    Article  Google Scholar 

  14. Rosa DS, Lopes DR, Calil MR (2005) Thermal properties and enzymatic degradation of blends of poly(ε-caprolactone) with starches. Polym Test 24(6):756–761

    Article  CAS  Google Scholar 

  15. Pérez CJ, Alvarez VA, Vázquez A (2008) Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater Sci Eng A 480(1–2):259–265

    Article  Google Scholar 

  16. Lee S-H, Ohkita T (2003) Mechanical and thermal flow properties of wood flour–biodegradable polymer composites. J Appl Polym Sci 90(7):1900–1905

    Article  CAS  Google Scholar 

  17. Swapna Joseph C, Harish Prashanth KV, Rastogi NK, Indiramma AR, Yella Reddy S, Raghavarao KSMS (2011) Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technol 4(7):1179–1185

    Article  Google Scholar 

  18. Sivalingam G, Madras G (2003) Thermal degradation of poly (ε-caprolactone). Polym Degrad Stab 80(1):11–16

    Article  CAS  Google Scholar 

  19. Shin BY, Narayan R, Lee SI, Lee TJ (2008) Morphology and rheological properties of blends of chemically modified thermoplastic starch and polycaprolactone. Polym Eng Sci 48(11):2126–2133

    Article  CAS  Google Scholar 

  20. Wu C-S (2004) Analysis of mechanical, thermal, and morphological behavior of polycaprolactone/wood flour blends. J Appl Polym Sci 94(3):1000–1006

    Article  CAS  Google Scholar 

  21. Valdés García A, Ramos Santonja M, Sanahuja AB, Selva M (2014) Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polym Degrad Stab 108:269–279

    Article  Google Scholar 

  22. Koenig MF, Huang SJ (1995) Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer 36(9):1877–1882

    Article  CAS  Google Scholar 

  23. Kim EG, Kim BS, Kim DS (2007) Physical properties and morphology of polycaprolactone/starch/pine-leaf composites. J Appl Polym Sci 103(2):928–934

    Article  CAS  Google Scholar 

  24. Lu D, Xiao C, Xu S (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3(6):366–375

    Article  CAS  Google Scholar 

  25. Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J Appl Polym Sci 104(4):2743–2750

    Article  CAS  Google Scholar 

  26. Reddy KR, Lee K-P, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7(9):3117–3125

    Article  CAS  Google Scholar 

  27. Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Kratochvíl J, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71(4):795–818

    Article  Google Scholar 

  28. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51(1):197–207

    Article  CAS  Google Scholar 

  29. Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19(22):3838–3843

    Article  CAS  Google Scholar 

  30. Lee YR, Kim SC, H-i L, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71

    Article  CAS  Google Scholar 

  31. Clark PD, Dowling NI, Huang M (2015) Role of Ti3+ in CS2 conversion over TiO2 Claus catalyst. Appl Catal A 489:111–116

    Article  CAS  Google Scholar 

  32. Han SJ, Lee H-I, Jeong HM, Kim BK, Raghu AV, Reddy KR (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B 53(7):1193–1204

    Article  CAS  Google Scholar 

  33. Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159(7):595–603

    Article  CAS  Google Scholar 

  34. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    Article  CAS  Google Scholar 

  35. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179

    Article  CAS  Google Scholar 

  36. Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92(2):1335–1347

    Article  CAS  Google Scholar 

  37. Liu J, Reni L, Wei Q, Wu J, Liu S, Wang Y, Li G (2011) Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. Express Polym Lett 5(8):742–752

    Article  CAS  Google Scholar 

  38. Hu X, Xu H, Zhang Z (1994) Influence of fillers on the effectiveness of stabilizers. Polym Degrad Stab 43(2):225–228

    Article  CAS  Google Scholar 

  39. Leong Y, Bakar A, Ishak Z, Ariffin A, Pukanszky B (2004) Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci 91(5):3315–3326

    Article  CAS  Google Scholar 

  40. Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF (2005) Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromol Mater Eng 290(8):792–801

    Article  CAS  Google Scholar 

  41. Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Lin S, Xiong H (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly (ɛ-caprolactone) composites. Carbohydr Polym 102:746–754

    Article  CAS  Google Scholar 

  42. Odusanya O, Ishiaku U, Azemi B, Manan B, Kammer H (2000) On mechanical properties of sago starch/poly (ε-caprolactone) composites. Polym Eng Sci 40(6):1298–1305

    Article  CAS  Google Scholar 

  43. Mahieu A, Terrié C, Agoulon A, Leblanc N, Youssef B (2013) Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity. J Polym Res 20(9):1–13

    Article  CAS  Google Scholar 

  44. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Osman A, Azuan N (2015) Polycaprolactone/starch composite: fabrication, structure, properties, and applications. J Biomed Mater Res Part A 103(7):2482–2498

    Article  CAS  Google Scholar 

  45. Sun Y, Hu Q, Qian J, Li T, Ma P, Shi D, Dong W, Chen M (2016) Preparation and properties of thermoplastic poly (caprolactone) composites containing high amount of esterified starch without plasticizer. Carbohydr Polym 139:28–34

    Article  CAS  Google Scholar 

  46. Willett JL (1994) Mechanical properties of LDPE/granular starch composites. J Appl Polym Sci 54(11):1685–1695

    Article  CAS  Google Scholar 

  47. Mano J, Koniarova D, Reis R (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14(2):127–135

    Article  CAS  Google Scholar 

  48. Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81(2):353–358

    Article  CAS  Google Scholar 

  49. Marques PT, Lima A, Bianco G, Laurindo J, Borsali R, Le Meins J-F, Soldi V (2006) Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate. Polym Degrad Stab 91(4):726–732

    Article  CAS  Google Scholar 

  50. Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Biodegradation and thermal decomposition of poly (lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95(9):1704–1707

    Article  CAS  Google Scholar 

  51. Brydson JA (1999) Plastics materials. Butterworth-Heinemann, London

    Google Scholar 

  52. Tomar N, Maiti SN (2010) Mechanical properties of mica-filled PBT/ABAS composites. J Appl Polym Sci 117(2):672–681

    Article  CAS  Google Scholar 

  53. Campos A, Tonoli GD, Marconcini J, Mattoso LC, Klamczynski A, Gregorski K, Wood D, Williams T, Chiou B-S, Imam S (2013) TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. J Polym Environ 21(1):1–7

    Article  CAS  Google Scholar 

  54. Sewda K, Maiti S (2007) Mechanical properties of HDPE/bark flour composites. J Appl Polym Sci 105(5):2598–2604

    Article  CAS  Google Scholar 

  55. Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21(3):255–262

    Article  CAS  Google Scholar 

  56. Pukanszky B, Belina K, Rockenbauer A, Maurer F (1994) Effect of nucleation, filler anisotropy and orientation on the properties of PP composites. Composites 25(3):205–214

    Article  CAS  Google Scholar 

  57. Móczó J, Pukánszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14(5):535–563

    Article  Google Scholar 

  58. Balamurugan GP, Maiti SN (2010) Effects of nanotalc inclusion on mechanical, microstructural, melt shear rheological, and crystallization behavior of polyamide 6-based binary and ternary nanocomposites. Polym Eng Sci 50(10):1978–1993

    Article  CAS  Google Scholar 

  59. Sewda K, Maiti S (2009) Mechanical properties of teak wood flour-reinforced HDPE composites. J Appl Polym Sci 112(3):1826–1834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Indian Institute of Technology Delhi and Ministry of Human Resource Development for providing research facilities and financial assistance to one of the author (Achla).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achla, Maiti, S.N. & Jacob, J. Analytical interpretation of mechanical response of green biocomposites based on poly(ε-caprolactone) and granular tapioca starch. Polym. Bull. 74, 1693–1711 (2017). https://doi.org/10.1007/s00289-016-1797-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1797-x

Keywords

Navigation