Skip to main content
Log in

Preparation of a long-alkyl-chain silane grafted organic montmorillonite and its nanocomposite with SEBS

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, a modified montmorillonite (W-H-OMMT) was prepared by intercalating pristine montmorillonite using a phosphorus salt and a subsequent grafting using a long-alkyl-chain silane, and the nanocomposites with poly[styrene–(ethylene-co-butylene)–styrene] (SEBS) were prepared by melt blending. The pristine and the modified MMT were characterized by XRD, FT-IR, XPS and SEM. The morphology of the SEBS nanocomposites was studied using XRD, SEM and TEM, and the results can be correlated well with transparency, color, surface contact angle, rheological behavior, thermal and mechanical properties of the nanocomposites. As compared with pristine and the modified clay, more uniform dispersion and improved compatibility are observed for the W-H-OMMT in the SEBS matrix, resulting in better transparency and more hydrophobic surface for the SEBS/W-H-OMMT nanocomposite. Better thermal stability, a synergetic effect in tensile strength and elongation at break were observed, which can be attributed to well dispersion of the W-H-OMMT, as well as perfect adhesion between the W-H-OMMT and the SEBS matrix from the enhanced molecular interaction between the long-alkyl chain and the SEBS molecules. Compared to pure SEBS, the strength and elongation of SEBS/W-H-OMMT nanocomposite increased by 8.5 and 7.6 %; meanwhile, the water contact angel and the 50 % weight loss temperature increased by 5.3 and 13.1 %, respectively. Appropriate silane grafted organic montmorillonite provided an efficient way for the overall performance improvement of SEBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang X, Pang SL, Yang JH, Yang F (2006) Structure and properties of SEBS/PP/OMMT nanocomposites. T Nonferr Metal Soc 16:s524–s528

    Article  Google Scholar 

  2. Calisi N, Giuliani A, Alderighi M, Schnorr JM, Swager TM, Francesco FD, Pucci A (2013) Factors affecting the dispersion of MWCNTs in electrically conducting SEBS nanocomposites. Eur Polym J 49:1471–1478

    Article  CAS  Google Scholar 

  3. Jeong U, Lee HH, Yang H, Kim JK, Okamoto S, Aida S, Sakurai S (2003) Kinetics and mechanism of morpohological transition from Lamella to cylinder microdomain in polystyrene-block-poly(ethylene-co-but-l-ene)-block-polystyrene triblock copolymer. Macromolecules 36:1685–1693

    Article  CAS  Google Scholar 

  4. Bockstaller MR, Mickiewicz RA, Thomas EL (2005) Block copolymer nanocomposites: perspectives for tailored functional materials. Adv Mater 17:1331–1349

    Article  CAS  Google Scholar 

  5. Tan QC, Shanks RA, Hui D (2016) Properties of functionalised graphene-multiwalled carbon nanotubes hybrid poly(styrene-b-butadiene-b-styrene) nanocomposites. Compos B 90:315–325

    Article  CAS  Google Scholar 

  6. Lee CH, Kim HB, Lim ST, Kim HS, Kwon YK, Choi HJ (2006) Ordering behavior of layered silicate nanocomposites with a cylindrical triblock copolymer. Macromol Chem Phys 207:444–455

    Article  CAS  Google Scholar 

  7. Tiggemann HM, Ribeiro VF, Celso F, Nachtigall SMB (2015) Effect of commercial clays on the properties of SEBS/PP/oil thermoplastic elastomers. Part 1. Physical, mechanical and thermal properties. Appl Clay Sci 109–110:151–156

    Article  Google Scholar 

  8. Han X, Zhou L, Liu H, Hu Y (2007) Effect of in situ oxidization with potassium permanganate on the morphologies of SEBS membranes. Polym Degrad Stabil 92:75–85

    Article  CAS  Google Scholar 

  9. Silva PAD, Pistor V, Goncalves GPO, Santos KS, Oliveira RVBD, Mauler RS (2014) Influence of the epoxidation degree of a polystyrene–polybutadiene–polystyrene (SBS) triblock copolymer on the compatibilization with an organomodified nanoclay. J Mater Sci 49:3622–3628

    Article  Google Scholar 

  10. Yahiaoui F, Benhacine F, Ferfera-Harrar H, Habi A, Hadj-Hamou AS, Grohens Y (2015) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72:235–254

    Article  CAS  Google Scholar 

  11. Lu X, Qiao X, Watanabe H, Gong X, Yang T, Li W, Sun K, Li M, Yang K, Xie H, Yin Q, Wang D, Chen X (2012) Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Rheol Acta 51:37–50

    Article  CAS  Google Scholar 

  12. Horst MF, Quinzani LM, Failla MD (2014) Rheological and barrier properties of nanocomposites of HDPE and exfoliated montmorillonite. J Thermoplast Compos 27:106–125

    Article  CAS  Google Scholar 

  13. Avagimova N, Pulyalina A, Toikka A, Suvorova O, Vilesov A, Polotskaya G (2013) Controlling the barrier properties of polymer composites containing montmorillonite. Petrol Chem 53:559–563

    Article  CAS  Google Scholar 

  14. Mittal V (2013) Modelling and prediction of barrier properties of polymer layered silicate nanocomposites. Polym Polym Compos 21:509–518

    CAS  Google Scholar 

  15. Hassan M, Reddy KR, Haque E (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    Article  CAS  Google Scholar 

  16. Reddy KR, Sin BC, Ryu KS (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    Article  CAS  Google Scholar 

  17. Helal E, Demarquette NR, Amurin LG, David E, Carastan DJ, Fréchette M (2015) Styrenic block copolymer-based nanocomposites: implications of nanostructuration and nanofiller tailored dispersion on the dielectric properties. Polymer 64:139–152

    Article  CAS  Google Scholar 

  18. Sarkar B, Alexandridis P (2015) Block copolymer–nanoparticle composites: structure, functional properties, and processing. Prog Polym Sci 40:33–62

    Article  CAS  Google Scholar 

  19. Zhang J, Gupta RK, Wilkie CA (2006) Controlled silylation of montmorillonite and its polyethylene nanocomposites. Polymer 47:4537–4543

    Article  CAS  Google Scholar 

  20. Nikolaidis AK, Achilias DS, Karayannidis GP (2012) Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur Polym J 48:240–251

    Article  CAS  Google Scholar 

  21. Hassan M, Reddy KR, Haque E (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51

    Article  CAS  Google Scholar 

  22. Chang KC, Lu HI, Lai MC (2015) Enhancement of physical properties of electroactive polyimide nanocomposites by addition of graphene nanosheets. Polym Int 64:1011–1017

    Google Scholar 

  23. Önal M, Sarıkaya Y (2008) The effect of organic cation content on the interlayer spacing, surface area and porosity of methyltributylammonium-smectite. Colloids Surf A 317:323–327

    Article  Google Scholar 

  24. Filippi S, Mameli E, Marazzato C, Magagnini P (2007) Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites. Eur Polym J 43:1645–1659

    Article  CAS  Google Scholar 

  25. Chiu CW, Huang TK, Wang YC, Alamani BG, Lin JJ (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485

    Article  CAS  Google Scholar 

  26. Tsai TY, Wen CK, Chuang HJ, Lin MJ, Ray U (2009) Effect of clay with different cation exchange capacity on the morphology and properties of poly (methyl methacrylate)/clay nanocomposites. Polym Compos 30:1552–1561

    Article  CAS  Google Scholar 

  27. Xie W, Gao Z, Liu K, Pan WP, Vaia R, Hunter D, Singh A (2001) Thermal characterization of organically modified montmorillonite. Thermochim Acta 367:339–350

    Article  Google Scholar 

  28. Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stabil 92:425–436

    Article  CAS  Google Scholar 

  29. Mondal M, Chattopadhyay PK, Chattopadhyay S, Setua DK (2010) Thermal and morphological analysis of thermoplastic polyurethane–clay nanocomposites: comparison of efficacy of dual modified laponite vs. commercial montmorillonites. Thermochim Acta 510:185–194

    Article  CAS  Google Scholar 

  30. Papageorgiou DG, Kinloch IA, Young RJ (2015) Graphene/elastomer nanocomposites. Carbon 95:460–484

    Article  CAS  Google Scholar 

  31. Merabia S, Sotta P, Long DR (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). J Am Chem Soc 41:8252–8266

    CAS  Google Scholar 

  32. Calderon JU, Lennox B, Kamal MR (2008) Thermally stable phosphonium-montmorillonite organoclays. Appl Clay Sci 40:90–98

    Article  CAS  Google Scholar 

  33. Suin S, Shrivastava NK, Maiti S, Khatua BB (2013) Phosphonium modified organoclay as potential nanofiller for the development of exfoliated and optically transparent polycarbonate/clay nanocomposites: preparation and characterizations. Eur Polym J 49:49–60

    Article  CAS  Google Scholar 

  34. Lai SM, Chen WC, Chen CM (2008) Preparation, structure, and properties of styrene-ethylene-butylenestyrene block copolymer/clay nanocomposites: part II fracture behaviors. Eur Polym J 44:3535–3547

    Article  CAS  Google Scholar 

  35. Kaganer V, Jenichen B, Ploog K (2000) Bragg diffraction in a coherent X-ray scattering experiment. Phys B 283:268–272

    Article  CAS  Google Scholar 

  36. Jancar J, Douglas JF, Starr FW (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343

    Article  CAS  Google Scholar 

  37. Zhang Y, Mark JE, Zhu Y (2014) Mechanical properties of polybutadiene reinforced with octadecylamine modified graphene oxide. Polymer 55:5389–5395

    Article  CAS  Google Scholar 

  38. Han SJ, Lee HI, Han MJ (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B 537:1193–1204

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (51403128 and 51373100), and the innovation Project of the Shanghai Municipal Education Commission (15ZZ076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Xu or Xia Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, X., Shi, C. et al. Preparation of a long-alkyl-chain silane grafted organic montmorillonite and its nanocomposite with SEBS. Polym. Bull. 74, 107–120 (2017). https://doi.org/10.1007/s00289-016-1701-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1701-8

Keywords

Navigation