Skip to main content
Log in

Influence of silane coupling agent on bound rubber formation of NR/SBR blend compounds reinforced with carbon black

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Influence of silane coupling agent [bis-(3-(triethoxysilyl)-propyl)-tetrasulfide, TESPT] on bound rubber formation of carbon black-filled NR/SBR blend compounds was investigated. Bound rubber formation of carbon black-filled NR compounds with and without TESPT was also examined. Bound rubber contents of the NR/SBR blend compounds were less than those of the single NR compounds. Secondary layer bound rubber content of the NR/SBR compound containing TESPT was greater than that of the compound without TESPT, whereas formation of the primary layer bound rubber was not nearly affected by TESPT. For the single NR compounds, both the primary and secondary layer bound rubber contents of the compound containing TESPT were greater than those of the compound without TESPT. TESPT enhances the bound rubber formation by making sulfur crosslinks between NR chains in the compound. The secondary layer bound rubber contents of the NR/SBR blend compounds were lower than the primary layer ones, while for the single NR compounds the secondary layer bound rubber contents were greater than the primary layer ones. Rubber ratios of NR and SBR of bound rubbers of the NR/SBR blend compounds were determined using thermogravimetric analysis (TGA). The NR/SBR rubber ratio of the secondary layer bound rubber was much greater than that of the primary layer one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pliskin I, Tokita N (1972) Bound rubber in elastomers: analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems. J Appl Polym Sci 16:473

    Article  CAS  Google Scholar 

  2. Blow CM (1973) Polymer/particulate filler interaction—the bound rubber phenomena. Polymer 14:309

    Article  CAS  Google Scholar 

  3. Dannberg EM (1986) Bound rubber and carbon black reinforcement. Rubber Chem Technol 59:512

    Article  Google Scholar 

  4. Wolff S, Wang M-J, Tan E-H (1993) Filler-elastomer interactions. Part VII. Study on bound rubber. Rubber Chem Technol 66:163

    Article  CAS  Google Scholar 

  5. Karasek L, Sumita M (1996) Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. J Mater Sci 31:281

    Article  CAS  Google Scholar 

  6. Aranguren MI, Mora E, Macosko CW (1997) Compounding fumed silicas into polydimethylsiloxane: bound rubber and final aggregate size. J Coll Interf Sci 195:329

    Article  CAS  Google Scholar 

  7. Choi S-S (2000) Characterization of bound rubber of filled styrene-butadiene rubber compounds using pyrolysis-gas chromatography. J Anal Appl Pyrolysis 55:161

    Article  CAS  Google Scholar 

  8. Choi S-S (2002) Influence of storage time and temperature and silane coupling agent on bound rubber formation in filled styrene-butadiene rubber compounds. Polym Test 21:201

    Article  CAS  Google Scholar 

  9. Choi S-S (2002) Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polym Adv Technol 13:466

    Article  CAS  Google Scholar 

  10. Mele P, Marceau S, Brown D, de Puydt Y, Alberola ND (2002) Reinforcement effects in fractal-structure-filled rubber. Polymer 43:5577

    Article  CAS  Google Scholar 

  11. Choi S-S (2004) Effect of bound rubber on characteristics of highly filled styrene-butadiene rubber compounds with different types of carbon black. J Appl Polym Sci 93:1001

    Article  CAS  Google Scholar 

  12. Ansarifar A, Lim HP, Nijhawan R (2004) Assessment of the effect of a bifunctional organosilane on the bound rubber and properties of some natural rubber compounds. Int J Adhesion Adhesives 24:9

    Article  CAS  Google Scholar 

  13. Choi S-S (2005) Influence of bound polymer on cure characteristics of natural rubber compounds reinforced with different types of carbon blacks. J Appl Polym Sci 98:2282

    Article  CAS  Google Scholar 

  14. Suzuki N, Ito M, Yatsuyanagi F (2005) Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 46:193

    Article  Google Scholar 

  15. Ansarifar A, Wang L, Ellis RJ, Kirtley SP, Riyazuddin N (2007) Enhancing the mechanical properties of styrene-butadiene rubber by optimizing the chemical bonding between silanized silica nanofiller and the rubber. J Appl Polym Sci 105:322

    Article  CAS  Google Scholar 

  16. Ramorino G, Bignotti F, Pandini S, Ricco T (2009) Mechanical reinforcement in natural rubber/organoclay nanocomposites. Compos Sci Technol 69:1206

    Article  CAS  Google Scholar 

  17. Qu M, Deng F, Kalkhoran SM, Gouldstone A, Robisson A, van Vliet KJ (2011) Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites. Soft Matter 7:1066

    Article  CAS  Google Scholar 

  18. Li Z, Ren W, Chen H, Ye L, Zhang Y (2012) Effect of liquid isoprene rubber on dynamic mechanical properties of emulsion polymerized styrene/butadiene rubber vulcanizates. Polym Int 61:531

    Article  CAS  Google Scholar 

  19. Choi S-S, Im S-H, Nah C (2012) Influence of solvent swell and bound rubber on wax solubility of carbon black-reinforced NR composite. J Appl Polym Sci 125(S1):E342

    Article  CAS  Google Scholar 

  20. Panampilly B, Thomas S (2013) Nano ZnO as cure activator and reinforcing filler in natural rubber. Polym Eng Sci 53:1337

    Article  CAS  Google Scholar 

  21. Cho PL, Hamed GR (1992) Green strength of carbon black-filled styrene-butadiene rubber. Rubber Chem Technol 65:475

    Article  CAS  Google Scholar 

  22. Cochrane H, Lin CS (1993) The influence of fumed silica properties on the processing, curing, and reinforcement properties of silicone rubber. Rubber Chem Technol 66:48

    Article  CAS  Google Scholar 

  23. Wang M-J, Zhang P, Mahmud K (2001) Carbon-silica dual phase filler, a new generation reinforcing agent for rubber: part IX. Application to truck tire tread compound. Rubber Chem Technol 74:124

    Article  CAS  Google Scholar 

  24. Li ZH, Zhang J, Chen SJ (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polym Lett 2:695

    Article  CAS  Google Scholar 

  25. Wolff S, Wang M-J (1992) Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement. Rubber Chem Technol 65:329

    Article  CAS  Google Scholar 

  26. Lee HG, Park CY (2015) Cure characteristics, mechanical properties and abrasion resistance of silica filled natural rubber vulcanizate. Elast Compos 50:159

    Article  CAS  Google Scholar 

  27. Voet A, Morawski JC, Donnet JB (1977) Reinforcement of elastomers by silica. Rubber Chem Technol 50:342

    Article  CAS  Google Scholar 

  28. Ou Y-C, Yu Z-Z, Vidal A, Donnet JB (1994) Effects of alkylation of silica filler on rubber reinforcement. Rubber Chem Technol 67:834

    Article  CAS  Google Scholar 

  29. Byers JT (1998) Silane coupling agents for enhanced silica performance. Rubber World 218(6):38

    CAS  Google Scholar 

  30. Li Y, Wang MJ, Zhang T, Zhang F, Fu X (1994) Study on dispersion morphology of silica in rubber. Rubber Chem Technol 67:693

    Article  CAS  Google Scholar 

  31. Choi S-S, Kim I-S (2002) Filler-polymer interactions in filled polybutadiene compounds. Eur Polym J 38:1265

    Article  CAS  Google Scholar 

  32. Choi S-S, Chung K-H, Nah C (2003) Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds using acrylonitrile-styrene-butadiene rubber (NSBR). Polym Adv Technol 14:557

    Article  CAS  Google Scholar 

  33. Choi S-S, Kim I-S, Lee SG, Joo CW (2004) Filler-polymer interactions of styrene and butadiene units in silica-filled styrene-butadiene rubber compounds. J Polym Sci B: Polym Phys 42:577

    Article  CAS  Google Scholar 

  34. Qu L, Yu G, Xie X, Wang L, Li J, Zhao Q (2013) Effect of silane coupling agent on filler and rubber interaction of silica reinforced solution styrene butadiene rubber. Polym Compos 34:1575

    Article  CAS  Google Scholar 

  35. Medalia AI (1970) Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; application to vehicle absorption and to die swell of filled rubber. J Coll Interf Sci 32:115

    Article  CAS  Google Scholar 

  36. Kraus G (1971) A carbon black structure-concentration equivalence principle. Application to stress-strain relationships of filled rubbers. Rubber Chem Technol 44:199

    Article  Google Scholar 

  37. Smit PPA (1968) Glass transition in carbon black reinforced rubber. Rubber Chem Technol 41:1194

    Article  Google Scholar 

  38. O’Brien J, Cashell E, Wardell GE, McBrierty VJ (1976) An NMR investigation of the interaction between carbon black and cis-polybutadiene. Macromolecules 9:653

    Article  Google Scholar 

  39. Gal AL, Yang X, Kluppel M (2005) Evaluation of sliding friction and contact mechanics of elastomers based on dynamic mechanical analysis. J Chem Phys 123:014704

    Article  Google Scholar 

  40. Leblanc JL (2000) Elastomer-filler interactions and the rheology of filled rubber compounds. J Appl Polym Sci 78:1541

    Article  CAS  Google Scholar 

  41. Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627

    Article  CAS  Google Scholar 

  42. Leopoldes J, Barres C, Leblanc JL, Georget P (2004) Influence of filler-rubber interactions on the viscoelastic properties of carbon-black-filled rubber compounds. J Appl Polym Sci 91:577

    Article  CAS  Google Scholar 

  43. Choi S-S, Ko E (2014) Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds. Polym Test 40:170

    Article  CAS  Google Scholar 

  44. Motiee F, Taghvaei-Ganjali S, Malekzadeh M (2013) Investigation of correlation between rheological properties of rubber compounds based on natural rubber/styrene-butadiene rubber with their thermal behaviors. Int J Ind Chem 4:16

    Article  Google Scholar 

  45. Salimi D, Nouri Khorasani S, Rezaei Abadchi M, Jahanbani Veshare S (2009) Optimization of physico-mechanical properties of silica-filled NR/SBR compounds. Adv Polym Technol 28:224

    Article  CAS  Google Scholar 

  46. Rahmatpour A, Abdollahi M, Shojaee M (2008) Structure and mechanical properties of 50/50 NR/SBR blend/pristine clay nanocomposites. J Macromol Sci B Phys 47:523

    Article  CAS  Google Scholar 

  47. Goyanes S, Lopez CC, Rubiolo GH, Quasso F, Marzocca AJ (2008) Thermal properties in cured natural rubber/styrene butadiene rubber blends. Eur Polym J 44:1525

    Article  CAS  Google Scholar 

  48. Choi S-S, Kim J-C, Ko J-E, Cho YS, Shin WG (2007) Influence of coupling agent on properties of carbon black-reinforced SBR and NR/SBR vulcanizates. J Ind Eng Chem 13:1017

    CAS  Google Scholar 

  49. Fernandez-Berridi MJ, Gonzalez N, Mugica A, Bernicot C (2006) Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim Acta 444:65

    Article  CAS  Google Scholar 

  50. Ismail H, Hairunezam HM (2001) The effects of a compatibilizer on curing characteristics, mechanical properties and oil resistance of styrene butadiene rubber/epoxidised natural rubber blends. Eur Polym J 37:39–44

    Article  CAS  Google Scholar 

  51. George SC, Ninan KN, Greonincks G, Thomas S (2000) Styrene-butadiene rubber/natural rubber blend: morphology, transport behavior, and dynamic mechanical properties. J Appl Polym Sci 78:1280–1283

    Article  CAS  Google Scholar 

  52. Joseph R, George KE, Francis DJ (1988) Studies on the cure characteristics and vulcanizate properties of 50/50 NR/SBR blend. J Appl Polym Sci 35:1003

    Article  CAS  Google Scholar 

  53. Cotten GR, Murphy LJ (1988) Mixing of carbon black with rubber. VI. analysis of NR/SBR blends. Rubber Chem Technol 61:609

    Article  CAS  Google Scholar 

  54. Choi S-S (2001) Preblending effect of biblends on properties of the carbon black-filled rubber compounds. Kor Polym J 9:37

    CAS  Google Scholar 

  55. Choi S-S (2000) Influence of silane coupling agent on properties of filled styrene-butadiene rubber compounds. Kor Polym J 8:285

    Google Scholar 

  56. Kraus G, Gruver JT (1968) Molecular weight effects in adsorption of rubbers on carbon black. Rubber Chem Technol 41:1256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by R&D Program for Industrial Core technology funded by the Ministry of Knowledge Economy, Republic of Korea (Project Number 10048308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Seen Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SS., Son, C.E. Influence of silane coupling agent on bound rubber formation of NR/SBR blend compounds reinforced with carbon black. Polym. Bull. 73, 3453–3464 (2016). https://doi.org/10.1007/s00289-016-1666-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1666-7

Keywords

Navigation