Skip to main content
Log in

Using depolarized light intensity to study the crystallization and degradation behavior of poly(l-lactic acid) and its blends with poly(ethylene oxide)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The crystallization and degradation behaviors of poly(l-lactic acid) (PLLA) and its blends with poly(ethylene oxide) (PEO) were investigated by depolarized light intensity (DLI). It was found that DLI is sensitive to study the degree of order in polymer thin film samples. The growth rate of the PLLA spherulites was increased by blending up to 80 % PEO, as it increased the chain mobility in the blend melts. At larger PEO compositions (i.e., 90 % PEO), the dilution effect dominates and the PLLA growth rate was retarded. Three distinct blend groups with respect to the blend composition were proposed: (1) 10–20 wt% PEO in which the PEO is not able to form any ordered structure in the binary blend; (2) 30–50 wt% PEO in which the PEO is able to form some order but not enough to develop spherulitic crystals; (3) 60–90 wt% PEO in which the PEO forms a network of spherulites throughout the pre-crystallized PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Magill JH (1962) A new technique for following rapid rates of crystallization II Isotactic polypropylene. Polymer 3:35

    Article  CAS  Google Scholar 

  2. Al-Raheil IA, Qudah AA (1995) On the triple melting behaviour of poly(ethylene succinate). Polym Int 37(4):249

    Article  CAS  Google Scholar 

  3. Muchova M, Lednicky F (1995) Induction time as a measure for heterogeneous spherulite nucleation: quantitative evaluation of early-stage growth kinetics. J Macromol Sci B 34(1–2):55

    Article  Google Scholar 

  4. Miyata T, Masuko T (1998) Crystallization behaviour of poly(l-lactide). Polymer 39(22):5515

    Article  CAS  Google Scholar 

  5. Ghanem A (1999) On the validity of crystallization kinetics parameters derived from the depolarized light intensity (DLI) technique: an experimental study of polyvinylidene fluoride. J Polym Sci Pol Phys 37(10):997

    Article  CAS  Google Scholar 

  6. Wang C, Chen CC, Cheng YW, Liao WP, Wang ML (2002) Simultaneous presence of positive and negative spherulites in syndiotactic polystyrene and its blends with atactic polystyrene. Polymer 43(19):5271

    Article  CAS  Google Scholar 

  7. Xu Y, Shang S, Huang J (2010) Crystallization behavior of poly(trimethylene terephthalate)–poly(ethylene glycol) segmented copolyesters/multi-walled carbon nanotube. Polym Test 29(8):1007

    Article  CAS  Google Scholar 

  8. Cai Y, Yan S, Yin J, Fan Y, Chen X (2011) Crystallization behavior of biodegradable poly(l-lactic acid) filled with a powerful nucleating agent: N, N′-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci 121(3):1408

    Article  CAS  Google Scholar 

  9. Ziabicki A, Misztal-Faraj B (2005) Applicability of light depolarization technique to crystallization studies. Polymer 46:2395

    Article  CAS  Google Scholar 

  10. Barrall EM II, Sweeney MA (1969) Depolarized light intensity and optical microscopy of some mesophase-forming materials. Molecular Crystals 5(3):257

    Article  CAS  Google Scholar 

  11. Huang S, Li H, Jiang S, Chen X, An L (2011) Morphologies and structures in poly(l-lactide-b-ethylene oxide) copolymers determined by crystallization, microphase separation, and vitrification. Polym Bull 67(5):885

    Article  CAS  Google Scholar 

  12. Xiong ZJ, Zhang XQ, Liu GM, Zhao Y, Wang R, Wang DJ (2013) Crystallization and tensile behavior of poly(l-lactide)/poly(ethylene oxide) blend. Chem J Chinese U 34(5):1288

    CAS  Google Scholar 

  13. Choi K-M, Lim S-W, Choi M-C, Kim Y-M, Han D-H, Ha C-S (2014) Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending. Polym Bull 71(12):3305

    Article  CAS  Google Scholar 

  14. Xue F, Chen X, An L, Funari S, Jiang S (2014) Crystallization induced layer-to-layer transitions in symmetric PEO-b-PLLA block copolymer with synchrotron simultaneous SAXS/WAXS. RSC Adv 4(99):56346

    Article  CAS  Google Scholar 

  15. Woo EM, Lugito G, Tsai JH (2015) Effects of top confinement and diluents on morphology in crystallization of poly(l-lactic acid) interacting with poly(ethylene oxide). J Polym Sci Part B Polym Phys 53(16):1160

    Article  CAS  Google Scholar 

  16. Adamski P, Dylik-Gromiec LA, Wojciechowski M (1981) Investigation of spherulite growth rate and activation energy of cholesteryl nonanoate and cholesteryl decanoate mixtures. J Crys Growth 52(1):332

    Article  CAS  Google Scholar 

  17. Agari Y, Sakai K, Kano Y, Nomura R (2007) Preparation and properties of the biodegradable graded blend of poly(l-lactic acid) and poly(ethylene oxide). J Polym Sci Pol Phys 45(21):2972

    Article  CAS  Google Scholar 

  18. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer 37(26):5849

    Article  CAS  Google Scholar 

  19. Lai WC, Liau WB, Yang LY (2008) The effect of ionic interaction on the miscibility and crystallization behaviors of poly(ethylene glycol)/poly(l-lactic acid) blends. J Appl Polym Sci 110(6):3616

    Article  CAS  Google Scholar 

  20. Wang C, Fan K, Hsiue G (2005) Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers. Biomaterials 26(16):2803

    Article  CAS  Google Scholar 

  21. Lee J, Jeong ED, Cho EJ, Gardella JA, Hicks W, Hard R, Bright FV (2008) Surface-phase separation of PEO-containing biodegradable PLLA blends and block copolymers. Appl Surf Sci 255(5):2360

    Article  CAS  Google Scholar 

  22. Hsieh YT, Woo EM (2013) Lamellar assembly and orientation-induced internal micro-voids by cross-sectional dissection of poly(ethylene oxide)/poly(l-lactic acid) blend. Express Polym Lett 7(4):396

    Article  CAS  Google Scholar 

  23. Li JZ, Schultz JM, Chan CM (2015) The relationship between morphology and impact toughness of poly(l-lactic acid)/poly(ethylene oxide) blends. Polymer 63:179

    Article  CAS  Google Scholar 

  24. Younes H, Cohn D (1988) Phase separation in poly(ethylene glycol)/poly(lactic acid) blends. Eur Polym J 24(8):765

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project is partially sponsored by Science Foundation of China University of Petroleum, Beijing (No. YJRC-2013-34) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaocan Zhang or Kathy L. Singfield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Singfield, K.L. & Ye, H. Using depolarized light intensity to study the crystallization and degradation behavior of poly(l-lactic acid) and its blends with poly(ethylene oxide). Polym. Bull. 73, 3437–3451 (2016). https://doi.org/10.1007/s00289-016-1665-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1665-8

Keywords

Navigation