Skip to main content
Log in

Mechanical and thermal properties of cationic ring-opening o-cresol formaldehyde epoxy/polyurethane acrylate composites enhanced by reducing graphene oxide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyurethane acrylate (PUA) and o-cresol formaldehyde epoxy resin (o-CFER) is synthesized. The PUA/o-CFER glass fiber-reinforced composites cured by free radical/cationic ring-opening reaction are modified by the reducing graphene oxide (r-GO). Effect of r-GO on the thermal and mechanical properties of PUA/o-CFER glass fiber-reinforced composites are characterized by FTIR, DMA and TGA. The result of FTIR shows that the system has cured completely. DMA analysis indicates that this system has better compatibility, and the glass transition temperature (T g) decreases with increasing r-GO content. TGA analysis shows that the initial thermal degradation temperature (T id) and activation energy (E a) enhance 13.1 °C and 3.12 kJ/mol, respectively. The tensile and impact strength of glass fiber-reinforced composites are approximately 50 and 60 % higher than those without r-GO. It is shown that the r-GO can enhance the mechanical properties and thermal stability of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Syurik J, Alyabyeva N, Alekseev A, Ageev OA (2014) AFM-based model of percolation in graphene-based polymer nanocomposites. Compos Sci Technol 95(1):38–43

    Article  CAS  Google Scholar 

  2. Dutta S, Pati SK (2010) Novel properties of graphene nanoribbons: a review. J Mater Chem 20(38):8207–8223

    Article  CAS  Google Scholar 

  3. Park OK, Hwang JY, Goh M, Lee JH, Ku BC, You NH (2013) Mechanically strong and multifunctional polyimide nanocomposites using amimophenyl functionalized graphene nanosheets. Macromolecules 46(9):3505–3511

    Article  CAS  Google Scholar 

  4. Martin-Gallegoa M, Verdejo R, Lopez-Manchado MA, Sangermano M (2011) Epoxy-graphene UV-cured nanocomposites. Polymer 52(21):4664–4669

    Article  Google Scholar 

  5. Norazlina H, Kamal Y (2015) Graphene modifications in polylactic acid nanocomposites: a review. Polym Bull 72(4):931–961

    Article  CAS  Google Scholar 

  6. Cen Zeng C, Lu SR, Xiao X, Gao J, Pan LI, He ZH, Yu JH (2015) Enhanced thermal and mechanical properties of epoxy composites by mixing noncovalently functionalized graphene sheets. Polym Bull 72(3):453–472

    Article  Google Scholar 

  7. Manafi P, Ghasemi I, Karrabi M, Azizi H, Manafi MR, Ehsaninamin P (2015) Thermal stability and thermal degradation kinetics (model-free kinetics) of nanocomposites based on poly (lactic acid)/graphene: the influence of functionalization. Polym Bull 72(5):1095–1112

    Article  CAS  Google Scholar 

  8. Okada H, Tokunaga T, Liu X, Takayanagi S, Matsushima A, Shimohigashi Y (2008) Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-γ. Environ Heal Persp 116(1):32–38

    Article  CAS  Google Scholar 

  9. Vom SFS, Myers JP (2008) Bisphenol A and risk of metabolic disorders. JAMA 300:1353–1355

  10. Vom SFS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Heal Persp 113(3):926–933

    Google Scholar 

  11. Gao JG, Kong DJ, Zhao HC, Li SR (2011) Curing kinetics, thermal, mechanical, and dielectric properties based on o-cresol formaldehyde epoxy resin with polyhedral oligomeric (N-aminoethyl-γ-amino propyl)silsesquioxane. Polym Adv Technol 22(10):1395–1402

    Article  CAS  Google Scholar 

  12. Yao HS, Liu WQ, Hou MH, Shen DY (2005) Study of epoxy polysiloxane modified o-cresol formaldehyde epoxy resins. China Plast 19(1):29–33

    CAS  Google Scholar 

  13. Crivello JV, Lam JHW (1977) Diaryliodonium salts. a new class of photoinitiators for cationic polymerization. Macromolecules 10(6):1307–1315

    Article  CAS  Google Scholar 

  14. Hou GX, Gao JG, Tian C (2013) Hybrid free radical-cationic thermal polymerization of methylacryloylpropyl-POSS/epoxy resins nanocomposites. J Polym Res 20(8):221–230

  15. Harald H, Abdelkrim E, Ulrich SS (2004) Free radical and thermal curing of terpyridine modified terpolymers. J Polym Sci Part A 42(16):4028–4035

    Article  Google Scholar 

  16. Datta J (2010) Synthesis and investigation of glycolysates and obtained polyurethane elastomers. J Elastom Plast 42(2):117–127

    Article  CAS  Google Scholar 

  17. Datta J, Kacprzyk M (2008) Thermal analysis and static strength of polyurethanes obtained from glycolysates. J Thermal Anal Calorim 93(3):753–757

    Article  CAS  Google Scholar 

  18. Kostrzewa M, Hausnerova B, Bakar M, Dalka M (2011) Property evaluation and structure analysis of polyurethane/epoxy graft interpenetrating polymer networks. J Appl Polym Sci 122(3):1722–1730

    Article  CAS  Google Scholar 

  19. Li JB (2006) High performance epoxy resin nanocomposites containing both organic montmorillonite and castor oil-polyurethane. Polym Bull 56(4):377–384

  20. Sow C, Riedl B, Blanchet P (2011) UV-waterborne polyurethane-acrylate nano-composite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment. J Coat Technol Res 8(2):211–221

    Article  CAS  Google Scholar 

  21. Lin J, Yang QZ, Wen XF, Cai ZQ, Pi P, Chen J, Yang ZR (2011) Synthesis, characterization, and thermal stability studies of bisphenol-A type novolac epoxy-polyurethane coating systems for in-mould decoration ink applications. J Polym Res 18(6):1667–1677

    Article  CAS  Google Scholar 

  22. Vabrk R, Czajlil I, Túry C, Ruszna I, Ille A, Vig A (1998) A study of epoxy resin-acrylated polyurethane semi-interpenetrating polymer networks. J Appl Polym Sci 68(1):111–119

    Article  Google Scholar 

  23. Shi YC, Wu YS, Zhu ZQ (2003) Modification of aqueous acrylic–polyurethane via epoxy resin postcrosslinking. J Appl Polym Sci 88(2):470–475

    Article  CAS  Google Scholar 

  24. Prolongo SG, Jimenez-Suarez A, Moriche R, Ureña A (2013) In situ processing of epoxy composites reinforced with graphene nanoplatelets. Compos Sci Technol 86(9):185–191

    Article  CAS  Google Scholar 

  25. Hodlur RM, Rabinal MK (2014) Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 90(1):160–165

    Article  CAS  Google Scholar 

  26. King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128(6):4217–4223

    Article  CAS  Google Scholar 

  27. Crivello JV (1979) Photoinitiators. US Patent: 4,136,102

  28. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Amer Chem Soci 80(6):1339

    Article  CAS  Google Scholar 

  29. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023

    Article  CAS  Google Scholar 

  30. Wang H, Hu YH (2011) Effect of oxygen content on structures of graphite oxides. Ind Eng Chem Res 50(10):6132–6137

    Article  CAS  Google Scholar 

  31. Shin HJ, Kim KK, Benayad A, Yoon SM (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    Article  CAS  Google Scholar 

  32. Achaby ME, Essamlali Y, Miri NE, Snik A, Abdelouahdi K, Fihri A, Zahouily M, Solhy A (2014) Mechanically strong nanocomposite films based on highly filled carboxymethyl cellulose with graphene oxide. J Appl Polym Sci. doi:10.1002/app.41042

  33. Gillham JK (1997) The TBA torsion pendulum: a technique for characterizing the cure and properties of thermosetting systems. Polym Int 44(2):262–276

    Article  CAS  Google Scholar 

  34. Brandalise RN, Zeni M, Martins JDN, Forte MMC (2009) Morphology, mechanical and dynamic mechanical properties of recycled high density polyethylene and poly (vinyl alcohol) blends. Polym Bull 62(1):33–43

  35. Kostrzewa M, Hausnerova B, Bakar M, Pająk K (2011) Preparation and characterization of an epoxy resin modified by a combination of MDI-based polyurethane and montmorillonite. J Appl Polym Sci 122(5):3237–3247

  36. Wu GH, Gu J, Zhao X (2007) Preparation and dynamic mechanical properties of polyurethane-modified epoxy composites filled with functionalized fly ash particulates. J Appl Polym Sci 105(3):1118–1126

    Article  CAS  Google Scholar 

  37. Yu B, Wang X, Xing WY, Yang HG, Song L, Hu Y (2012) UV-curable functionalized graphene oxide/polyurethane acrylate nanocomposite coatings with enhanced thermal stability and mechanical properties. Ind Eng Chem Res 51(45):14629–14636

    Article  CAS  Google Scholar 

  38. Zhu D, Pignatello JJ (2005) Characterization of aromatic compound adsorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol 39(9):2033–2041

    Article  CAS  Google Scholar 

  39. Lin D, Xing B (2008) Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ Sci Technol 42(16):5917–5923

    Article  CAS  Google Scholar 

  40. Ogata M, Kinjo N, Kawata T (1993) Effects of crosslinking on physical properties of phenol- formaldehyde novolac cured epoxy resins. J Appl Polym Sci 48(1):583–601

    Article  CAS  Google Scholar 

  41. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Thermal stability of graphite oxide. Chem Phys Lett 470(4):255–258

    Article  CAS  Google Scholar 

  42. Hsu SH, Wu MC, Chen S (2012) Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon 50(3):896–905

    Article  CAS  Google Scholar 

  43. Cao XX, Gao JG, Dai X, Liu YF, He XF (2012) Kinetics of thermal degradation of nanometer calcium carbonate/linear low-density polyethylene nanocomposites. J Appl Polym Sci 126:1159–1164

    Article  CAS  Google Scholar 

  44. Jin FL, Park SJ (2012) Thermal properties of epoxy resin/filler hybrid composites. Polym Degrad Stabil 97(11):2148–2153

    Article  CAS  Google Scholar 

  45. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6(1):183–195

  46. Mahesh KPO, Alagar M, Jothibasu S (2006) A comparative study on the preparation and characterization of aromatic and aliphatic bismaleimides-modified polyurethane–epoxy interpenetrating polymer network matrices. J Appl Polym Sci 99(6):3592–3602

    Article  CAS  Google Scholar 

  47. Lee JK, Song S, Kim B (2012) Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polym Compos 33(8):1263–1273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the High Level Talents Foundation (No. A201400504) of Hebei Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Huo or Jungang Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Jiang, C., Huo, L. et al. Mechanical and thermal properties of cationic ring-opening o-cresol formaldehyde epoxy/polyurethane acrylate composites enhanced by reducing graphene oxide. Polym. Bull. 73, 2227–2244 (2016). https://doi.org/10.1007/s00289-016-1605-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1605-7

Keywords

Navigation