Skip to main content
Log in

Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Recycling fine particles (smaller than 150 µm) of acrylic-based superabsorbent polymer is of a great importance due to environmental and economic issues. In this paper, fines or dust is agglomerated by soaking in treatment solution containing acetone, water and cross-linker and subsequently curing at 160 °C for 2 h. Bisphenol A diglycidyl ether resin (BADGE), ethylene glycol diglycidyl ether (EGDGE) and polyethylene glycol diglycidyl ether (PEGDGE) have been employed as crosslinking agents. The considered effective parameters includes: cross-linker type and concentration in treatment solution and acetone to water ratio. Swelling capacity in saline and deionized water, absorbency under load (AUL), storage modulus, recovery proportion (percentage of particles above 100-mesh screen) and optical microscope images were utilized to investigate accurately. All the cross-linkers could raise the particle size in 70 and 50 % acetone content by variation of maximum recovery percentages between 70 and 93. The best condition was found for BADGE cross-linker in 70 and 50 % acetone content with appropriate swollen gel strength and absorbencies. Besides both dry and wet agglomeration were firmly integrated. Therefore, crosslinking agglomerated particles is a promising way to recycle fine SAP waste on account of its simplicity and efficiency.

Graphical abstract

Recycling fine particles of acrylic-based superabsorbent polymer waste is of a great importance due to environmental and economic issues. Crosslinking agglomerated particles as a promising approach has been considered to reuse the fine SAP. Three different crosslinking agents were employed to compare their productivity. Swelling capacity in saline and deionized water, absorbency under load (AUL), storage modulus, recovery proportion and optical microscope images were utilized to investigate accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley-VCH, New York

    Google Scholar 

  2. Kabiri K, Zohuriaan-Mehr MJ (2008) Superabsorbent polymer materials: a review. Iran Polym J17:451–477

    Google Scholar 

  3. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735

    Article  CAS  Google Scholar 

  4. Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047

    Article  CAS  Google Scholar 

  5. Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687

    Article  CAS  Google Scholar 

  6. Myung D, Waters D, Wiseman M, Duhamel P, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  CAS  Google Scholar 

  7. Pour-Esmaeil S, Qazvini NT, Mahdavi H (2014) Interpenetrating polymer networks (IPN) based on gelatin/poly(ethylene glycol) dimethacrylate/clay nanocomposites: structure properties relationship. Mater ChemPhys 143:1396–1403

    CAS  Google Scholar 

  8. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:276–289

    Article  Google Scholar 

  9. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M (2009) Chitosan-modified nanoclay–poly(AMPS) nanocomposite hydrogels with improved gel strength. Polym Int 58:1252–1259

    Article  CAS  Google Scholar 

  10. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2010) Chitosan modified MMT-poly(AMPS) nanocomposite hydrogel: heating effect on swelling and rheological behavior. J Appl Polym Sci 116:2548–2556

    CAS  Google Scholar 

  11. Pourjavadi A, Kheirabadi M, Zohuriaan-Mehr MJ, Kabiri K (2009) Antipolyelectrolyte superabsorbing nanocomposites: synthesis and properties. J Appl Polym Sci 114:3542–3547

    Article  CAS  Google Scholar 

  12. Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A67:1016–1024

    Article  Google Scholar 

  13. Esposito A, Sannino A, Cozzolino A, Quintiliano SN, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110

    Article  CAS  Google Scholar 

  14. Stern T, Lamas MC, Benita S (2002) Design and characterization of protein-based microcapsules as a novel catamenial absorbent system. Int J Pharm 242:185–190

    Article  CAS  Google Scholar 

  15. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339

    Article  CAS  Google Scholar 

  16. Gemeinhart RA, Chen J, Park H, Park K (2000) pH-sensitivity of fast responsive superporous hydrogels. J Biomat Sci Polym E 11:1371

    Article  CAS  Google Scholar 

  17. Chen J, Park K (1999) Superporous hydrogels: fast responsive hydrogel systems. J Macromol Sci, Pure Appl Chem 36:917–930

    Article  Google Scholar 

  18. Wang W, Wang Q, Wang A (2011) pH-Responsive carboxymethylcellulose-g-poly(sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromol Res 19:57–65

    Article  CAS  Google Scholar 

  19. Demirtaş TT, Karakeçili AG, Gümüşderelioluğ M (2008) Hydroxyapatite containing superporous hydrogel composites: synthesis and in vitro characterization. J Mater Sci Mater Med 19:729–735

    Article  Google Scholar 

  20. Omidian H, Park K (2002) Experimental design for the synthesis of polyacrylamide superporous hydrogels. J Bioact Compat Polym 17:433–450

    Article  CAS  Google Scholar 

  21. Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102:3–12

    Article  CAS  Google Scholar 

  22. Sutton TA, Jacob CV, Lim T, Sandor SP (1995) Process and apparatus for recycling aqueous fluid absorbents fines. The Dow Chemical Company. US Patent 5,064,582 A

  23. TengG SoucekMD (2001) Synthesis and characterization of cycloaliphatic diepoxidecrosslinkable core–shell latexes. Polymer 42:2849–2862

    Article  Google Scholar 

  24. Merfelda G, Molaisona C, Koenigera R et al (2005) Acid/epoxy reaction catalyst screening for low temperature (120 °C) powder coatings. Prog Org Coat 52:98–109

  25. Shechter L,Wynstra J (1956) Glycidyl ether reactions with alcohols, phenols, carboxylic acids and acid anhydrides. Ind Eng Chem 48:86–93

  26. Gonzalez YM, de Caro P, Thiebaud-Roux S, Lacaze-Dufaure C (2007) Fatty acid methyl esters as biosolvents of epoxy resins: a physicochemical study. J Solut Chem 36:437–446

  27. Jockusch S, Turro NJ, Mitsukami Y, Matsumoto M, Iwamura T, Lindner T, Flohr A, di Massimo G (2009) Photoinduced surface crosslinking of superabsorbent polymer particles. J Appl Polym Sci 111:2163–2170

  28. Gundogan N, Melekaslan D, Okay O (2002) Rubber elasticity of poly(N-isopropylacrylamide) gels at various charge densities. Macromolecules 35:5616–5622

  29. Chen J, Shen J (2000) Swelling behaviors of polyacrylate superabsorbent in the mixtures of water and hydrophilic solvents. J Appl Polym Sci 75:1331–1338

  30. Gedde UW (1995) Polymer physics. Chapman & Hall, London

    Google Scholar 

  31. Antonietti M, Caruso RA, Göltner CG, Weissenberger MC (1999) Morphology variation of porous polymer gels by polymerization in lyotropic surfactant phases. Macromolecules 32:1383–1389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Kabiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moini, N., Kabiri, K., Zohuriaan-Mehr, M.J. et al. Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste. Polym. Bull. 73, 1119–1133 (2016). https://doi.org/10.1007/s00289-015-1538-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1538-6

Keywords

Navigation