Skip to main content
Log in

Self-crosslinkable complexes based on poly(ethylene glycol) (PEG), poly(itaconic acid) (PIA) and N-methylol acrylamide (NMA) as pharmaceutical hydrophilic matrices

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The formation and characterization of poly(itaconic acid)/N-methylol acrylamide/poly(ethylene glycol) (PIA/NMA/PEG) complexes through in situ polymerization of itaconic acid on poly(ethylene glycol) was investigated. FTIR indicated that PEG crystallization was hindered by complex formation. The decrease in the crystallinity of PEG was also observed by DSC and indicated that the mobility of some PEG segments was inhibited by the presence of the polyacid. According to the swelling experiments, complexes proved to be suitable for use as excipient in the preparation of drug delivery systems responsive to pH changing. DMA was used to estimate the crosslink densities and the results were found to be in good agreement with the swelling results. Further, the adhesion strength of the synthesized polymers was used as preliminary evaluation of their potential of mucoadhesion. The results indicated that the adhesion performance is related to the presence of NMA. Drugs which suffer degradation in stomach pH, such as proteins and enzymes are potential candidates to be included in the systems based on PIA/NMA/PEG to pass through the stomach (pH near to 1.2–3.5). Upon reaching the initial portion of the small intestine (pH >5.5), the polymer will swell and release the active substance via diffusion and/or erosion of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khutoryanskiy VV (2007) Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. Int J Pharm 334(1–2):15–26

    Article  CAS  Google Scholar 

  2. Sudre G, Tran Y, Creton C, Hourdet D (2012) pH/Temperature control of interpolymer complexation between poly(acrylic acid) and weak polybases in aqueous solutions. Polymer 53(2):379–385

    Article  CAS  Google Scholar 

  3. Klement T, Büchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431

    Article  CAS  Google Scholar 

  4. Krušić MK, Džunuzović E, Trifunović S, Filipović J (2004) Polyacrylamide and poly(itaconic acid) complexes. Eur Polym J 40(4):793–798

    Article  CAS  Google Scholar 

  5. Kopecek J, Yang J (2007) Hydrogels as smart biomaterials. Polym Int 56(9):1078–1098

    Article  CAS  Google Scholar 

  6. Dodou D, Breedveld P, Wieringa PA (2005) Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm 60(1):1–16

    Article  CAS  Google Scholar 

  7. Calles JA, Tártara LI, Lopez-García A, Diebold Y, Palma SD, Vallés EM (2013) Novel bioadhesive hyaluronan-itaconic acid crosslinked films for ocular therapy. Int J Pharm 455(1–2):48–56

    Article  CAS  Google Scholar 

  8. Dobić SN, Filipović JM, Tomić SLJ (2012) Synthesis and characterization of poly(2-hydroxyethyl methacrylate/itaconic acid/poly(ethylene glycol) dimethacrylate) hydrogels. Chem Eng J 179:372–380

    Article  CAS  Google Scholar 

  9. Lele BS, Hoffman AS (2000) Mucoadhesive drug carriers based on complexes of poly(acrylic acid) and PEGylated drugs having hydrolysable PEG–anhydride–drug linkages. J Control Release 69(2):237–248

    Article  CAS  Google Scholar 

  10. Tomić SLJ, Filipović JM (2004) Synthesis and characterization of complexes between poly(itaconic acid) and poly(ethylene glycol). Polym Bull 52(5):355–364

    Article  CAS  Google Scholar 

  11. Lyra MAM, Soares-Sobrinho JL, Brasileiro MT, de La Roca MF, Barraza JA, Viana OS, Rolim Neto PJ (2007) Sistemas Matriciais Hidrofílicos e Mucoadesivos para Liberação Controlada de Fármacos. Lat Am J Pharm 26(5):784–793

    Google Scholar 

  12. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477

    CAS  Google Scholar 

  13. Zhao F, Qin X, Feng S (2012) Effects of microgel content and N-methylolacrylamide on the properties of microgel composite hydrogels prepared by postcrosslinking method. Polym Composite 33(1):44–51

    Article  CAS  Google Scholar 

  14. Ai Y, Wei Y, Nie J, Yang D (2013) Study on the synthesis and properties of mussel mimetic poly(ethylene glycol) bioadhesive. J Photochem Photobiol B Biol 120:183–190

    Article  CAS  Google Scholar 

  15. Alkan C, Günter E, Hiebler S, Himpel M (2012) Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energ Convers Manag 64:364–370

    Article  CAS  Google Scholar 

  16. Ilie C, Stîngă G, Iovescu A, Purcar V, Anghel DF, Donescu D (2010) The influence of nonionic surfactants on the Carbopol-PEG interpolymer complexes. Rev Roum Chim 55(7):409–417

    CAS  Google Scholar 

  17. Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93(1):175–188

    Google Scholar 

  18. Silverstein RM, Webster FX (2000) Identificação Espectrométrica de Compostos Orgânicos. LTC, Rio de Janeiro

    Google Scholar 

  19. Huglin MB, Radwan MA (1991) Comparison of the thermal behaviour of aqueous solutions and hydrogels of poly(N-methylol acrylamide). Polymer 32(18):3381–3386

    Article  CAS  Google Scholar 

  20. Umaña E, Ougizawa T, Inoue T (1999) Preparation of new membranes by complex formation of itaconic acid-acrylamide copolymer with polyvinylpyrrolidone: studies on gelation mechanism by light scattering. J Membr Sci 157(1):85–96

    Article  Google Scholar 

  21. Ouyang Q, Cheng L, Wang H, Li K (2008) Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stabil 93(8):1415–1421

    Article  CAS  Google Scholar 

  22. Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60

    Article  CAS  Google Scholar 

  23. Zobrist B, Weers U, Koop T (2003) Ice nucleation in aqueous solutions of poly[ethylene glycol] with different molar mass. J Chem Phys 118(22):10254–10261

    Article  CAS  Google Scholar 

  24. Liu O, Du Wijn JR, Van Blitterswijk CA (1997) Intermolecular complexation between PEG/PBT block copolymer and polyelectrolytes polyacrylic acid and maleic acid copolymer. Eur Polym J 33(7):1041–1047

    Article  CAS  Google Scholar 

  25. Veličković SJ, Džunuzović ES, Griffiths PC, Lacik I, Filipović J, Popović IGJ (2008) Polymerization of itaconic acid initiated by a potassium persulfate/N,N-dimethylethanolamine system. J Appl Polym Sci 110(5):3275–3282

    Article  CAS  Google Scholar 

  26. Verma SK, Pandey VS, Yadav M, Behari K (2014) Grafting of N-(hydroxymethyl) acrylamide on to κ-carrageenan: synthesis, characterization and applications. Carbohydr Polym 102:590–597

    Article  CAS  Google Scholar 

  27. Chen J, Liu M, Liu H, Ma L (2009) Synthesis, swelling and drug release behavior of poly(N, N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mater Sci Eng C 29(7):2116–2123

    Article  CAS  Google Scholar 

  28. Brown NR, Frazier CE (2007) Cross-linking poly[(vinyl acetate)-co-N-methylolacrylamide] latex adhesive performance part I: N-methylolacrylamide (NMA) distribution. Int J Adhes Adhes 27(7):547–553

    Article  CAS  Google Scholar 

  29. El-Hamshary H (2007) Synthesis and water sorption studies of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. Eur Polym J 43(11):4830–4838

    Article  CAS  Google Scholar 

  30. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–36

    Article  CAS  Google Scholar 

  31. Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release 62(1–2):81–87

    Article  CAS  Google Scholar 

  32. Milašinović N, Jugović ZK, Milosavljević N, Filipović J, Krušić MK (2012) Controlled release of lipase from Candida rugosa loaded into hydrogels of N-isopropylacrylamide and itaconic acid. Int J Pharm 436(1–2):332–340

    Google Scholar 

  33. Jeria-Orell M, Pizarro GC, Marambio OG, Huerta M, Geckeler KE (2006) Synthesis of N-hydroxymethyl acrylamide with β-methyl hydrogen itaconate and itaconic acid hydrogels: effects of the pH, composition, and ionic strength on the swelling behavior. J Appl Polym Sci 100(3):1735–1741

    Article  CAS  Google Scholar 

  34. Madsen F, Peppas NA (1999) Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition. Biomaterials 20(18):1701–1708

    Article  CAS  Google Scholar 

  35. Xie M, Li H (2007) Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: effect of blending with polypropylene and poly(ethylene glycol). Eur Polym J 43(8):3480–3487

    Article  CAS  Google Scholar 

  36. Miller TM, Zhao L, Brennan AB (1998) Rubber-elasticity of hybrid organic-inorganic composites evaluated using dynamic mechanical spectroscopy and equilibrium swelling. J Appl Polym Sci 68(6):947–957

    Article  CAS  Google Scholar 

  37. Rodriguéz E, Katime I (2003) Some mechanical properties of poly[(acrylic acid)-co-(itaconic acid)] hydrogels. Macromol Mater Eng 288(8):607–612

    Article  CAS  Google Scholar 

  38. Chen L, Wu F (2012) Preparation and characterization of novel self cross-linking fluorinated acrylic latex. J Appl Polym Sci Sci 123(4):1997–2002

    Article  CAS  Google Scholar 

  39. Hirschl Ch, Biebl-Rydlo M, De Biasio M, Mühleisen W, Neumaier L, Scherf W, Oreski G, Eder G, Chernev B, Schwab W, Kraft M (2013) Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study. Sol Energ Mat Sol C 116:203–218

    Article  CAS  Google Scholar 

  40. Smart JD (2005) The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 57(11):1556–1568

    Article  CAS  Google Scholar 

  41. Serra L, Doménech J, Peppas NA (2006) Design of poly(ethylene glycol)—tethered copolymers as novel mucoadhesive drug delivery systems. Eur J Pharm Bio 63(1):11–18

    Article  CAS  Google Scholar 

  42. Kim B, Peppas NA (2003) Analysis of molecular interactions in poly(methacrylic acid-g-ethylene glycol) hydrogels. Polymer 44(13):3701–3707

    Article  CAS  Google Scholar 

  43. Sudhakar Y, Kuotsu K, Bandyopadhyay AK (2006) Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release 114(1):15–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Foundation for Research Support of Minas Gerais State (FAPEMIG) and National Council for Scientific and Technological Development (CNPq) for the research studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane Ayres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayres, E., Ferreira, C.R., Lima, T.H. et al. Self-crosslinkable complexes based on poly(ethylene glycol) (PEG), poly(itaconic acid) (PIA) and N-methylol acrylamide (NMA) as pharmaceutical hydrophilic matrices. Polym. Bull. 73, 75–95 (2016). https://doi.org/10.1007/s00289-015-1473-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1473-6

Keywords

Navigation