Skip to main content

Advertisement

Log in

Photopolymerization of Ricinodendron heudelotii oil and methyl methacrylate in presence and absence of iron(ΙII) oxalato complex as photoinitiator

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the photopolymerization of Ricinodendron heudelotii (R. heudelotii) oil and methyl methacrylate in presence and absence of iron(III) tris(oxalato) ferrate(III) tetrahydrate (Fe[Fe(C2O4)3]·4H2O) (A) in N,N′-dimethylformamide under UV radiation of 254 nm at 40 °C has been studied. The rate of polymerization, R P, varies linearly with the inverse of [A] up to 6.5 × 10−4 mol L−1 and decreases above this concentration with the increase of [A]. The photoinitiator-free polymerization and polymerization in presence of the Fe(III) photoinitiator exhibit similar polymerization behavior. Thermal analysis of poly(R. heudelotii oil-co-MMA) was investigated by thermogravimetric analysis method. The thermal analysis was performed at five different heating rates. The poly(R. heudelotii oil-co-MMA) synthesized in the presence of the photoinitiator exhibits three stages of decomposition while two stages of decomposition pattern are prominent in photoinitiator-free polymers and for both polymers the main decomposition occurs at temperature range 300–500 °C. The apparent activation energy (E a) of the decomposition has been calculated by three non-isothermal methods of Flynn–Wall–Ozawa, Kissinger and modified Coats–Redfern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marshall E, Newton AC, Schreckenberg K (2003) Commercialization of non-timber forest products: first steps in analyzing the factors influencing success. Int For Rev 2:128–137

    Google Scholar 

  2. Tchiegang C, Kapseu C, Njouenkeu R, Ngassoum MB (1997) Ngassoum, Ricinodendron heudelotii (Bail.) Kernels: a novel ingredient for tropical food agro-industries. J Food Eng 32:1–10

    Google Scholar 

  3. Tchiegang C, Kapseu C, Dandjouma AA, Parmentier M (2003) Etude des conditions d’extraction de l’huile par pressage des amandes de Ricinodendron heudelotii (Bail.) Pierre Pax. J Food Eng 58:363–371

    Google Scholar 

  4. Mbofung CMF, Gee JM, Knight DJ (1994) Fatty acid profile of some Cameroonian spices. J Sci Food Agr 66:213–216

    CAS  Google Scholar 

  5. Cosyns H, Degrande A, Wulf RD, Damme PV, Tchoundjeu Z (2011) Can commercialization of NTFPs alleviate poverty? A case study of Ricinodendron heudelotii (Baill) pierre ex pax kernal marketing in Cameroon. J Agric Rural Dev Trop Subtrop 112:45–56

    Google Scholar 

  6. Shiembo PN, Newton AC, Leakey RRB (1997) Vegetative propagation of Ricinodendron heudelotii, a West African fruit tree. J Trop For Sci 9:514–525

    Google Scholar 

  7. Kapseu C, Tchiegang C (1995) Chemical properties of Ricinodendron heudelotii (Bail.) seed oil. J Food Lipids 2:87–98

    CAS  Google Scholar 

  8. Thanamongkollit N, Soucek MD (2012) Synthesis and properties of acrylate functionalized alkyds via a Diels–Alder reaction. Prog Org Coat 73:382–391

    CAS  Google Scholar 

  9. Li F, Larock RC (2000) Thermosetting polymers from cationic copolymerization of tung oil: synthesis and characterization. J Appl Polym Sci 78:1044–1056

    CAS  Google Scholar 

  10. Li F, Larock RC (2003) Synthesis, structure and properties of new Tung oil–styrene–divinylbenzene copolymers prepared by thermal polymerization. Biomacromolecules 4:1018–1025

    CAS  PubMed  Google Scholar 

  11. Lu Y, Larock RC (2007) New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Biomacromolecules 8:3108–3114

    CAS  PubMed  Google Scholar 

  12. Wool PR, Williams IG, Morye SS, Can E, Kusefoglu HS, Khot NS, Palmese PG, Lascala JJ (2001) Development and application of triglycerides-based polymers and composites. J Appl Polym Sci 82:703–723

    Google Scholar 

  13. Narine SS, Kong X, Hojabri L (2009) Fatty acid-derived diisocyanate and bio-based polyurethane product from vegetable oil: synthesis, polymerization and characterization. Biomacromolecules 10:884–891

    PubMed  Google Scholar 

  14. Rong MZ, Wang HJ, Hong MQ, Zang J, Hu W, Chen M, Tibor C (2008) Biodegradable foam plastics based on castor oil. Biomacromolecules 9:615–623

    PubMed  Google Scholar 

  15. Ronda CJ, Sacristan M, Galia M, Cadiz V (2009) Silicon-containing soybean-oil based copolymers: synthesis and properties. Biomacromolecules 10:2678–2685

    PubMed  Google Scholar 

  16. Kusefoglu S, Wool RP, Can E (2010) Rigid thermosetting liquid moulding resins from renewable resources. I. Synthesis and polymerization of soybean oil monoglyceride maleates. J Appl Polym Sci 81:69–77

    Google Scholar 

  17. Rawlins J, Black M, Messman J (2011) Chain transfer of vegetable oil macromonomers in acrylic solution copolymerization. J Appl Polym Sci 120:1390–1396

    Google Scholar 

  18. Ying X, Larock RC (2010) Vegetable oil based polymeric materials: synthesis, properties and application. Green Chem 12:1893–1909

    Google Scholar 

  19. Sharma V, Kundu PP (2006) Addition polymers from natural oils—a review. Prog Polym Sci 31:983–1008

    CAS  Google Scholar 

  20. Huang Y, Pang L, Wang H, Zhong R, Zeng Z, Yang J (2013) Synthesis and properties of UV-curable tung oil based resins via modification of Diels–Alder reaction, nonisocyanate polyurethane and acrylates. Prog Org Coat 76:654–661

    CAS  Google Scholar 

  21. Wu J, Zhang T, Ma G, Li P, Ling L, Wang B (2013) Synthesis of a tung oil–rosin adduct via the Diels–Alder reaction: its reaction mechanism and properties in an ultraviolet-curable adhesive. J Appl Polym Sci 130:4201–4208

    CAS  Google Scholar 

  22. Thanamongkollit N, Miller RK, Soucek MD (2012) Synthesis of UV-curable tung oil and UV-curable tung oil based alkyd. Prog Org Coat 73:425–434

    CAS  Google Scholar 

  23. Ang DTC, Gan SN (2012) Novel approach to convert non-self drying palm stearin alkyds into environment friendly UV curable resins. Prog Org Coat 73:409–414

    CAS  Google Scholar 

  24. Ang DTC, Gan SN (2012) Environment friendly UV-curable resins from palm stearin alkyds. J Appl Polym Sci 125:306–313

    Google Scholar 

  25. Trumbo DL, Mote BE (2010) Synthesis of Tung oil–diacrylate copolymer via the Diels–Alder reaction and properties of film from the copolymers. J Appl Polym Sci 80:2369–2375

    Google Scholar 

  26. Odian G (2004) Principle of polymerization, Chap 3, 4th edn. Wiley, New York

    Google Scholar 

  27. Fouassier JP, Allonas X, Burget D (2003) Photopolymerization reaction under UV lights: principal, mechanisms and examples of applications. Prog Org Coat 47:16–36

    CAS  Google Scholar 

  28. Yagci Y, Jockusch S, Turro NJ (2010) Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43:6245–6260

    CAS  Google Scholar 

  29. Boutevin B, Duhamel CJ, Vazquez CP (2013) Photoinitiator-free: open-air acceptor/donor copolymerization of bismaleimide: simple polymerization conditions for new thermoplastic elastomer production. Macromol Chem Phys 214:1621–1628

    Google Scholar 

  30. Boutevin B, Duhamel CJ, Vazquez CP (2009) Photopolymerization without photoinitiator bismaleinmide-containing oligo(oxypropylene)s: effect of oligoethers chain length. Macromol Chem Phys 210:269–278

    Google Scholar 

  31. Zhang X, Yang J, Zeng Z, Huang L, Chen Y, Wang H (2007) Photopolymerization and initiating mechanism of Michael addition oligomers without photoinitiator. Poly Eng Sci 47:1082–1090

    CAS  Google Scholar 

  32. Scherzer T (2004) Photopolymerization of acrylates without photoinitiators with short-wavelength UV radiation: a study with real-time Fourier transform infrared spectroscopy. J Polym Sci A Polym Chem 42:894–901

    CAS  Google Scholar 

  33. Vyazovkin S, Burnham AK, Cried JM, Manuela LAP, Sbirrazzuoli N, Popes C (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    CAS  Google Scholar 

  34. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532

    CAS  Google Scholar 

  35. Nehemie DT, Mbouna D, Denis ON (2007) Regeneration in vitro du Ricinodendron heudelotii. Cah Agric 16:31–36

    Google Scholar 

  36. Baruah SD, Goswami A, Dass NN (1995) Photoinitiation of methyl methacrylate with a novel iron(III) oxalate complex. Polym Bull 35:561–566

    Google Scholar 

  37. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    CAS  Google Scholar 

  38. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. J Anal Chem 29:1702–1706

    CAS  Google Scholar 

  39. Friedman HL (1964) Kinetic of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci 61:183–195

    Google Scholar 

  40. Ozawa T (1965) New method of analysing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    CAS  Google Scholar 

  41. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328

    CAS  Google Scholar 

  42. Woo RSC, Chen Y, Zhu H, Li J, Kim J-K, Leung CKY (2007) Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part I: Photo-degradation. Compos Sci Technol 67:3448–3456

    CAS  Google Scholar 

  43. Rabek JF (1995) Polymer photodegradation: mechanisms and experimental method, Chap 1, 1st edn. Chapman and Hall, London, pp 1–5

    Google Scholar 

  44. Schultz AR, Joshi MG (1984) Kinetics of photoinitiated free-radical polymerization. J Appl Polym Sci Polym Phys 22:1753–1771

    Google Scholar 

  45. Goswami A, Baruah SD (1997) Photopolymerization of methyl methacrylate sensitized by tris(2,2-bipyridine)iron(III). Polym Int 43:22–26

    CAS  Google Scholar 

  46. Lee TY, Roper TM, Jonson ES, Kudyakov I, Viswanathan K, Nason C, Guymon CA, Hoyle CE (2003) The kinetic of vinyl acrylate photopolymerization. Polymer 44:2859–2865

    CAS  Google Scholar 

  47. Guo J, Schork F (2008) Hybrid miniemulsion polymerization of acrylate/oil and acrylate/fatty acid systems. Macromol React Eng 2:265–276

    CAS  Google Scholar 

  48. Tsavalas JG, Luo Y, Schork FJ (2003) Grafting mechanisms in hybrid miniemulsion polymerization. J Appl Polym Sci 87:1825–1836

    CAS  Google Scholar 

  49. Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829

    CAS  PubMed  Google Scholar 

  50. Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26:605–665

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. D. Ramaiah, Director, CSIR-NEIST, Jorhat for permission to publish the results. E.F.A. expresses his heartfelt thanks to CSIR-India and TWAS-Italy for award of the CSIR-TWAS fellowship (FR Number: 3240239552) for postgraduate studies at CSIR-NEIST, Jorhat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi D. Baruah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assanvo, E.F., Baruah, U., Konwar, D. et al. Photopolymerization of Ricinodendron heudelotii oil and methyl methacrylate in presence and absence of iron(ΙII) oxalato complex as photoinitiator. Polym. Bull. 72, 3209–3225 (2015). https://doi.org/10.1007/s00289-015-1462-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1462-9

Keywords

Navigation