Skip to main content

Advertisement

Log in

Biocompatibility studies of HDPE–HA composites with different HA content

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

High-density polyethylene–hydroxyapatite (HDPE–HA) composites with different filler content (5–20 %) were synthesized by in situ ethylene polymerization. Good filler dispersion was observed without formation of agglomerates. Osteoblast cell behavior in HDPE–HA composites was evaluated in terms of adhesion, alkaline phosphatase activity and proliferation. Fluorescence and scanning electron microscopy results showed good cell adhesion and proliferation, and extensive filopodium-like protrusion connected to hydroxyapatite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Park Joon B (1984) Biomaterials science and engineering, 1st edn. Springer, New York

    Book  Google Scholar 

  2. Park JB, Bronzino JD (2003) Biomaterials: principles and applications, 2nd edn. CRC Press, EUA

    Google Scholar 

  3. Park JB, Lakes RS (1992) Biomaterials—an introduction, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  4. Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Hydroxyapatite reinforced polyethylene a mechanically compatible implant material for bone replacement. Biomaterials 1–2:185–186. doi:10.1016/0142-9612(81)90050-8

    Article  Google Scholar 

  5. Tanner KE, Downes RN, Bonfield W (1994) Clinical applications of hydroxyapatite reinforced materials. Br Ceram Trans 93(3):104–107

    CAS  Google Scholar 

  6. Tanner E, Bonfield W (1997) Hydroxyapatite composites biomaterials-evolutions and applications. Mater World 5(1):18–20

    CAS  Google Scholar 

  7. Di Silvio L, Dalby M, Bonfield W (1998) In vitro response of osteoblasts to hydroxyapatite-reinforced polyethylene composites. J Mater Sci Mater Med 9(12):845–848 (pii:230476)

  8. Dalby M, Di Silvo L, Davies GW, Bonfield W (2000) Surface topography and HA filler volume effect on primary human osteoblasts in vitro. J Mater Sci Mater Med. 12:805–810. doi:10.1023/a:1008957630020

    Article  Google Scholar 

  9. Pandey A, Jan E, Aswath PB (2006) Physical and mechanical properties behavior of hot rolled HDPE/HA composites. J Mater Sci 41:3369–3376. doi:10.1007/s10853-005-5350-9

    Article  CAS  Google Scholar 

  10. Albano C, Karam A, Dominguez N, Sanchez Y, Perera R, Gonzalez G (2006) Optimal condictionting for preparation of HDPE–HA composite in an internal mixer. Mol Cryst Liq Cryst 448:251–259. doi:10.1080/15421400500403325

    Google Scholar 

  11. Albano C, Karam A, Perera R, González G, Domínguez N, González J, Sánchez Y (2006) HDPE/HA composites obtanied in solution: effect of the gamma radiation. Nucl Instrum Methods Phys Res Sect B 247:331–341. doi:10.1016/j.nimb.2006.03.004

    Article  Google Scholar 

  12. Wang M, Porter D, Bonfield W (1994) Processing, characterization, and evaluation of hydroxyapatite reinforced polyethyelene composites. Br Ceram Trans 93(3):91–95

    CAS  Google Scholar 

  13. Kaminsky W, Funck A, Wiemann K (2006) Nanocomposites by in situ polymerization of olefins with metallocene catalysts. Macromol Symp 239:1–6. doi:10.1002/masy.200690084

    Article  CAS  Google Scholar 

  14. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study in analytical methods. J Biomed Mater Res 62(4):600–612. doi:10.1002/jbm.10280

    Article  CAS  Google Scholar 

  15. Armarego WLF, Chai CLL (2009) Chapter 4—purification of organic chemicals. In: Purification of laboratory chemicals, 6th edn. Butterworth-Heinemann, Oxford, pp 88–444. doi:10.1016/B978-1-85617-567-8.50012-3

    Chapter  Google Scholar 

  16. Shiver DF Drezdozn MA (1986) The manipulation of air-sensitive compounds. The manipulation of air-sensitive compounds, pp 7–10, ISBN: 978-0-471-86773-9

  17. Noris-Suárez K, Barrios De Arenas I, Vasquez M, Baron Y, Atias I, Bermudez J, Morillo C, Olivares Y, Lira J (2003) Caracterización biológica empleando células osteobláticas de vidrios del sistema SiO2·Na2O·CaO·K2O·MgO·P2O5. Modificados con Al2O3 y B2O3 23(1):82–88, ISSN 0255-6952

  18. Klimberg R, Mccullough BD (2013) Regression and ANOVA review. In: Fundamentals of predictive analytics with JMP. SAS Institute, pp 63–103, ISSN 2286-4822

  19. Dalby MJ, MV Kayser, Bonfield W, Di Silvio L (2002) Initial attachment of osteoblasts to an optimised HAPEX topography. Biomaterials 23(3):681–690. doi:10.1016/S0142-9612(01)00156-9

    Article  CAS  Google Scholar 

  20. Romero Maria A, Sánchez F, Sabino MA, Rodríguez JP, González G, Noris-Suarez K (2011) Biocompatibility study on substrates fabricated for never guides using scanning electron microscopy and comparing two drying sample methods. Acta Microsc 20(2):131–140

    Google Scholar 

  21. Bale WF, Bonner JF, Hodge HC, Adeler H, Wreath R, Bell R (1945) Optical and X-ray diffraction studies of certain calcium phosphates. Ind Eng Chem 17(8):491–495. doi:10.1021/i560144a010

    CAS  Google Scholar 

  22. Luwing K (1995) X-ray podwer diffraction pattern of calcium phosphate analyzed by Rietveld method. J Biomed Mater Res 29(11):1403–1413. doi:10.1002/jbm.820291112

    Article  Google Scholar 

  23. Ebrahimpour A, Johnsson M, Richardson CF, Nancollas GH (1993) The characterization of hydroxyapatite preparations. J Colloid Interface Sci 159(1):158–163

    Article  CAS  Google Scholar 

  24. Fowler Bo (1974) Infrared studies of apatites. I. Vibracional assigments for calcium, strontium, barium hydroxyapatites utilizing isotopic substitution. Inorg Chem 13:194–207

    Article  CAS  Google Scholar 

  25. Hermán V, Karam A, Albano C, Gonzalez G (2009) Polimerización in situ de etileno cargado con hidroxipatita. Supl Rev Latinoam Metal Mater S2(1):163–164. doi:10.1006/jcis.1993.1307

    Google Scholar 

  26. Hermán V, Albano C, Karam A, Rodríguez B, Gonzalez G, Urbina De Navarro C (2009) Estudio de la morfología de compuestos PEAD-HA preparados mediante polimerización in situ. Acta Microsc 18(Supp C):313–314

  27. Joseph R, Magregor WJ, Martyn MT, Tanner KE, Coates PD, Bonfield W (2002) Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites. Biomaterials 23:4295–4302. doi:10.1016/S0142-9612(02)00192-8

    Article  CAS  Google Scholar 

  28. Dalby MJ, Kayser MV, Bonfield W, Di Silvio L (2002) Initial attachment of osteoblasts to an optimised HAPEX topography. Biomaterials 23(3):681–690. doi:10.1016/S0142-9612(01)00156-9

    Article  CAS  Google Scholar 

  29. Bonfield W (2002) Materials science: materials in medicine. J Mater Sci Mater Med 13(1):iii (pii:399698)

  30. Dalby MJ, Di Silvio L, Gurav N, Annaz B, Kayser MV, Bonfield (2002) Optimizing HAPEX topography influences osteoblast response. Tissue Eng 8(3):453–467. doi:10.1089/107632702760184718

    Article  CAS  Google Scholar 

  31. Di Silvio L, Dalby MJ, Bonfield W (2002) Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials 23(1):101–107 (pii:S0142961201000849)

    Article  Google Scholar 

  32. Mj Dalby, Di Silvio L, Gurav N, Annaz B, Mv Kayser, Bonfield W (2002) Optimizing HAPEX topography influences osteoblast response. Tissue Eng 8(3):453–467. doi:10.1089/107632702760184718

    Article  Google Scholar 

  33. Daisuke Yamashita, Miho Machigashira, Motoharu Miyamoto, Hironobu Takeuchi, Kazuyuki Noguchi, Yuichi Izumi, Seiji Ban (2009) Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dental Mater J 28(4):461–470. doi:10.4012/dmj.28.461

    Article  Google Scholar 

  34. Huang J, Di Silvo L, Wang M, Tanner KE, Bonfield W (1997) In vitro mechanical and biological assessment of hydroxyapatite-reinforced polyethylene composites. J Mater Sci Mater Med. 8:775–779

    Article  CAS  Google Scholar 

  35. Rasyidi M, Mat H, Wahit U, Rafiq M, Kadir A, Aizan W, Rahman W (2011) Effect of hydroxyapatite reinforced high density polyethylene composites on mechanical and bioactivity properties. Key Eng Mater 471–472:303–308. doi:10.4028/www.scientific.net/KEM.471-472.303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Hermán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermán, V., González, G., Noris-Suárez, K. et al. Biocompatibility studies of HDPE–HA composites with different HA content. Polym. Bull. 72, 3083–3095 (2015). https://doi.org/10.1007/s00289-015-1454-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1454-9

Keywords

Navigation