Skip to main content
Log in

Concentration-dependent ionic conductivity and dielectric relaxation of methyl blue-dyed polyethylene oxide films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Methyl blue (MB)-dyed polyethylene oxide (PEO) films were prepared by solution casting technique to study the concentration -dependent conductivity and relaxation mechanism. FTIR spectroscopy confirmed the polymer–dye interactions. XRD and DSC data revealed substantial structural modification such as decrease in degree of crystallinity and reduction in spherulites size of polymer matrix due to the addition of MB. Biphasic nature of these films was observed in SEM images. Impedance and polarization current studies confirmed the ion conduction dominance in the films. The addition of MB dye in PEO resulted in enhanced conductivity due to partial dissolution of the crystalline phase. Electrical conductivity as a function of temperature has been studied. The samples exhibited Arrhenius behavior with two different activation energies. The dielectric studies showed non-Debye type relaxation phenomenon. There was an increase of two orders of magnitude in the conductivity for highest dye concentration. These results are explained in terms of molecular disorder in the PEO-dye phase, heat of fusion, impedance spectra, modulus study and relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. MacCallum JR, Vincent CA (1987) Polymer electrolyte review. Elsevier, London

    Google Scholar 

  2. Vincent CA (1987) Polymer electrolytes. Prog Solid State Chem 17:145–261

    Article  CAS  Google Scholar 

  3. Gray FM (1991) Solid polymer electrolytes fundamentals and technological applications. VCH Publishers Inc, New York

    Google Scholar 

  4. Conway BE (1999) Electrochemical supercapacitors; scientific fundamental and technological applications. Canada kluwer academic/plenum publishers, New York

    Google Scholar 

  5. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  6. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7:319–327

    Article  CAS  Google Scholar 

  7. Armand M (1986) Polymer electrolytes. Ann Rev Mater Sci 16:245–261

    Article  CAS  Google Scholar 

  8. Zahurak SM, Kaplan ML, Rietman EA, Murphy DW, Cava RJ (1988) Phase relationships and conductivity of the polymer electrolytes poly (ethylene oxide)/lithium tetrafluoroborate and poly (ethylene oxide)/lithium trifluoromethanesulfonate. Macromolecules 21:654–660

    Article  CAS  Google Scholar 

  9. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638

    Article  CAS  Google Scholar 

  10. Liao Chien-Shiun, Ye Wei-Bin (2004) Structure and conductive properties of poly (ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochim Acta 49:4993–4998

    Article  CAS  Google Scholar 

  11. Sreepathi Rao S, Jaipal Reddy M, Laxmi Narsaiah E, Subba Rao UV (1995) Development of electrochemical cells based on (PEO + NaYF4) and (PEO + KYF4) polymer electrolytes. Mater Sci Eng B 33:173–177

    Article  Google Scholar 

  12. Kowacz Magdalena, Groves Patrick, Jose MSSE, Luis Paulo NR (2011) On the use of ionic liquids to tune crystallization. Cryst Growth Des 11:684–691

    Article  CAS  Google Scholar 

  13. Siripitayananon J, Wangsoub S, Olley RH, Mitchell GR (2004) The use of a low-molar-mass self-assembled template to direct the crystallisation of poly(e-caprolactone). Macromol Rapid Commun 25:1365–1370

    Article  CAS  Google Scholar 

  14. Bouridah A, Dalard F, Deroo D, Cheradame H, Le Nest JF (1985) Poly(dimethylsiloxane)–poly(ethylene oxide) based polyurethane networks used as electrolytes in lithium electrochemical solid state batteries. Solid State Ionics 15:233–240

    Article  CAS  Google Scholar 

  15. Le Nest JF, Gandini A, Cheradame A (1988) Crosslinked polyethers as media for ionic conduction. Br Polym J 20:253–268

    Article  Google Scholar 

  16. Wang C, Liu Q, Cao Q, Meng Q, Yang L (1992) Investigation on the structure and the conductivity of plasticized polymer electrolytes. Solid State Ionics 53–56:1106–1110

    Article  Google Scholar 

  17. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95

    Article  CAS  Google Scholar 

  18. Kim TH, Lee HK, Park OO, Chin BD, Lee SH, Kim JK (2006) White-light-emitting diodes based on iridium complexes via efficient energy transfer from a conjugated polymer. Adv Funct Mater 16:611–617

    Article  CAS  Google Scholar 

  19. Noh Yong-Young, Lee Chang-Lyoul, Kim Jang-Joo, Yase Kiyoshi (2003) Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes. J Chem Phys 118:2853

    Article  CAS  Google Scholar 

  20. Dey SK, Manik NB, Bhattacharya S, Basu AN (2001) A dye/polymer based solid state thin film photoelectrochemical cell used for light detection. Synth Met 118:19–23

    Article  CAS  Google Scholar 

  21. Somasundaram G, Ramalingam A (2000) Gain studies of Coumarin 503 dye-doped polymer laser. Opt Laser Eng 33:157–163

    Article  Google Scholar 

  22. Somasundaram G, Ramalingam A (2000) Gain studies of Coumarin 490 dye-doped polymer laser. Chem Phys Lett 324:25–30

    Article  CAS  Google Scholar 

  23. Jaipal Reddy M, Peter Chu P (2002) Optical microscopy and conductivity of poly(ethylene oxide) complexed with KI salt. Electrochim Acta 47:1189–1196

    Article  CAS  Google Scholar 

  24. Alwan TJ (2010) Refractive index dispersion and optical properties of dye doped polystyrene films. Malaysia Polym J 5:204–213

    Google Scholar 

  25. Manshad RKH, Hassan QMA (2012) Optical limiting properties of magenta doped PMMA under CW laser illumination. Adv Appl Sci Res 3:3696–3702

    CAS  Google Scholar 

  26. Hadi Al-Kadhemy MF, Abaas Wafaa Hameed (2013) Optical properties of crystal violet doped PMMA films. Res Rev Polym 4:45–51

    Google Scholar 

  27. Seetharam S, Umesh G, Chandrasekharan K, Balakrishna K (2007) Third order nonlinear optical properties and two photon absorption in newly synthesized phenyl sydnone doped polymer. Synth Met 157:142–146

    Article  Google Scholar 

  28. Subramanya K, Manjunatha V, Devendrappa H (2011) Optical and electrical characterization of (PEO + methyl violet) polymer electrolytes. J Appl Polym Sci 124:2558–2566

    Google Scholar 

  29. Lithgow AM, Romero L, Sanchez IC, Souto FA, Vega CA (1986) Interception of electron-transport chain in bacteria with hydrophilic redox mediators. J Chem Res (S) 5:178–179

    Google Scholar 

  30. Patit PK, Biswas Jagnnath, Kim Hyun, Choe Soonja (2003) Influence of film preparation procedures on the crystallinity, morphology and mechanical properties of LLDPE films. Eur Polym J 39:1585–1593

    Article  Google Scholar 

  31. Booth C, Nicholas CV, Wilson DJ (1989) High polymers with main-chain oxyethylene sequences. In: MacCallum JR, Vincent CA (eds) Polymer electrolytes reviews-I. Elsevier, London, p 229

    Google Scholar 

  32. Agrawal SL, Markandey S, Mridula T, Mrigank MD, Kamlesh P (2009) Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films. J Mater Sci 44:6060–6068

    Article  CAS  Google Scholar 

  33. Wagner JB, Wagner CJ (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601

    Article  CAS  Google Scholar 

  34. Hashmi SA, Kumar Ajay, Maurya KK, Chandra SJ (1990) Proton-conducting polymer electrolyte. I. The polyethylene oxide + NH4ClO4 system. Phys D Appl Phys 23:1307–1314

    Article  CAS  Google Scholar 

  35. Reddeppa N, Reddy TJR, Achari VBS, Rao VVRN, Sharma AK (2009) Electrical and optical characterization of (PEO + PVAc) polyblend films. Ionics 15:255–259

    Article  CAS  Google Scholar 

  36. Kumar Yogesh, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873

    Article  CAS  Google Scholar 

  37. Holdsworth PJ, Turner-Jones A (1971) The melting behaviour of heat crystallized poly(ethylene terephthalate). Polymer 12:195–208

    Article  CAS  Google Scholar 

  38. Pandey GP, Hashmi SA, Agrawal RC (2008) Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics 179:543–549

    Article  CAS  Google Scholar 

  39. Papke BL, Ratner MA, Shriver DF (1981) Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts. Phys Chem Solids 42:493–500

    Article  CAS  Google Scholar 

  40. Zain NM, Arof AK (1998) Structural and electrical properties of poly(ethylene oxide)–cadmium sulphate complexes. Mater Sci Eng B 52:40–46

    Article  Google Scholar 

  41. Liu Peng, Li Weiying, Zhang Jingbo (2009) Electrodeposition and photocatalytic selectivity of ZnO/methyl blue hybrid thin films. J Phys Chem C 113:14279–14284

    Article  CAS  Google Scholar 

  42. Khanna RK, Lowenthal MS, Ammon HL, Moore MH (2002) Molecular structure and infrared spectrum of solid amino formate (HCO2NH2): relevance to interstellar ices. Astrophys J Suppl Ser 140:457–464

    Article  CAS  Google Scholar 

  43. Dega-Szafran Zofia, Katrusiak Andrzej, Szafran Mirosław (1999) Conformations of, and NHO hydrogen bond in, piperidine-1-valeric acid and its dehydrate. J Chem Soc Perkin Trans 2:1967–1971

    Article  Google Scholar 

  44. Caykara Tuncer, Demirci Serkan, Mehmet SE, Guven Olgun (2005) Poly(ethylene oxide) and its blends with sodium alginate. Polymer 46:10750–10757

    Article  CAS  Google Scholar 

  45. Leinweber P, Schulten HR (1992) Differential thermal analysis, thermogravimetry and in-source pyrolysis-mass spectrometry studies on the formation of soil organic matter. Thermochim Acta 200:151–167

    Article  CAS  Google Scholar 

  46. Sheppard JD, Forgeron DW (1987) Differential thermogravimetry of peat fractions. Fuel 66:232–236

    Article  CAS  Google Scholar 

  47. Sharma Jyoti, Hashmi SA (2013) Magnesium ion transport in poly(ethylene oxide)-based polymer electrolyte containing plastic-crystalline succinonitrile. J Solid State Electrochem 17:2283–2291

    Article  CAS  Google Scholar 

  48. Preechatiwong Wanchart, Schultz JM (1996) Electrical conductivity of poly(ethylene oxide)–alkali metal salt systems and effects of mixed salts and mixed molecular weights. Polymer 37:5109–5116

    Article  CAS  Google Scholar 

  49. Rabello MS, White JR (1997) Crystallization and melting behaviour of photodegraded polypropylene-I chemi-crystallization. Polymer 38:6379–6387

    Article  CAS  Google Scholar 

  50. Ibrahim S, Johan MR (2012) Thermolysis and conductivity studies of poly(ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7:2596–2615

    CAS  Google Scholar 

  51. Roger GL (1993) Electrical and electrochemical properties of ion conducting polymers. In: Scrosati B(ed) Applications of electroactive polymers. Champman & Hall, London, p 3

  52. Kelly I, Owen JR, Steele BCH (1984) Mixed polyether lithium ion conductors. J Electroanal Chem Interfacial Electrochem 168:467–478

    Article  CAS  Google Scholar 

  53. Mohan VM, Raja V, Sharma AK, Narasimha Rao VVR (2005) Ionic conductivity and discharge characteristics of solid-state battery based on novel polymer electrolyte (PEO + NaBiF4). Mater Chem Phys 94:177–181

    Article  CAS  Google Scholar 

  54. Wang Yan-Jie, Pan Yi, Kim Dukjoon (2006) Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J Power Sources 159:690–701

    Article  CAS  Google Scholar 

  55. Mohan VM, Raja V, Balaji Bhargav P, Sharma AK, Narasimha Rao VVR (2007) Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J Polym Res 14:283–290

    Article  CAS  Google Scholar 

  56. Polizos G, Shilov VV, Pissis PJ (2002) Temperature and pressure effects on molecular mobility and ionic conductivity in telechelics based on poly(ethylene oxide) capped with hydroxyl groups at both ends. Non Cryst Solids 305:212–217

    Article  CAS  Google Scholar 

  57. Schonhals A (2003) Molecular dynamics in polymer model systems. In: Kremer F, Schonhals A (eds) Broadband dielectric spectroscopy, Springer-Verlag, Berlin, p 264

  58. Smyth CP (1955) Dielectric behavior and structure. McGraw Hill, New York

    Google Scholar 

  59. Richert Ranko, Wagner Hermann (1998) The dielectric modulus: relaxation versus retardation. Solid State Ionics 105:167–173

    Article  CAS  Google Scholar 

  60. Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Curr Appl Phys 12:539–543

    Article  Google Scholar 

  61. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037

    Article  CAS  Google Scholar 

  62. Ayesh AS (2010) Electrical and optical characterization of PMMA doped with Y0.0025Si0.025Ba0.9725 (Ti(0.9)Sn0.1)O3 ceramic. Chin J Polym Sci 28:537–546

    Article  CAS  Google Scholar 

  63. Rajendra D, Roy AS, Ameena P (2013) Structural, electrical and electrochemical parameters of PEO–NaClO3 composite for battery applications. Compos part B Eng 52:211–216

    Article  CAS  Google Scholar 

  64. Abdel-Hamid HM (2005) Effect of electron beam irradiation on polypropylene films—dielectric and FT-IR studies. Solid State Electron 49:1163–1167

    Article  CAS  Google Scholar 

  65. Mauritz KA (1989) Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4 long-range ion transport. Macromolecules 22:4483–4488

    Article  CAS  Google Scholar 

  66. Sreekanth T, Jaipal Reddy M, Ramalingaiah S, Subba Rao UV (1999) Ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with NaNO3 salt-application as an electrochemical cell. J Power Sources 79:105–110

    Article  CAS  Google Scholar 

  67. Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Phys B 357:412–419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Science and Technology (DST) Delhi, India (No. SR/S2/CMP-0018/2011 dated 19-01-2012) for the financial support, University Science Instrumentation Centre (USIC), Mangalore University for providing FT-IR and PURSE laboratory, Mangalore University for TGA facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hundekal Devendrappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamath, A., Devendrappa, H. Concentration-dependent ionic conductivity and dielectric relaxation of methyl blue-dyed polyethylene oxide films. Polym. Bull. 72, 2705–2724 (2015). https://doi.org/10.1007/s00289-015-1431-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1431-3

Keywords

Navigation