Skip to main content
Log in

Michael reaction of chitosan with acrylamides in an aqueous alkali–urea solution

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Michael reaction of chitosan with acryl reagents in acidic media is a facile method to introduce functional groups; however, when acrylamide (AAm) is used only a low degree of substitution was achieved. Here, the reaction was carried out in a new solvent, aqueous LiOH/urea solution. In the alkaline media, hydroxyl groups at the C-6 position, instead of amino groups at the C-2 position, act as Michael donor. The introduced amide groups continue to hydrolyze to give carboxylate groups. The reaction is faster, and the total degree of substitution is higher than the one achieved in acidic media, despite that the reaction temperature is lower and the reaction time is shorter. The total degree of substitution and hydrolysis percentage increases with increasing reaction time and elevated temperature. Increasing the feeding molar ratio of AAm to chitosan increases the total degree of substitution, but reduces hydrolysis percentage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

References

  1. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  2. Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:1–8

    Article  CAS  Google Scholar 

  3. Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  Google Scholar 

  4. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A (2002) Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–840

    Article  CAS  Google Scholar 

  5. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624

    Article  CAS  Google Scholar 

  6. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  Google Scholar 

  7. Xi LuJ, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Effects of chitosan on rat knee cartilages. Biomaterials 20:1937–1944

    Article  Google Scholar 

  8. Ngah WW, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Article  Google Scholar 

  9. Sashiwa H, Aiba S (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908

    Article  CAS  Google Scholar 

  10. Mather BD, Viswanathan K, Miller KM, Long TE (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31:487–531

    Article  CAS  Google Scholar 

  11. Sashiwa H, Shigemasa Y, Roy R (2000) Chemical modification of chitosan part 2—novel N-alkylation of chitosan via Michael type reaction. Chem Lett 29:862–863

    Article  Google Scholar 

  12. Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yajima H, Yamamori N, Ichinose Y, Sunamoto J, Aiba S (2003) Chemical modification of chitosan. Part 15: synthesis of novel chitosan derivatives by substitution of hydrophilic amine using N-carboxyethylchitosan ethyl ester as an intermediate. Carbohydr Res 338:557–561

    Article  CAS  Google Scholar 

  13. Sashiwa H, Yamamori N, Ichinose Y, Sunamoto J, Aiba S (2003) Chemical modification of chitosan, 17—Michael reaction of chitosan with acrylic acid in water. Macromol Biosci 3:231–233

    Article  CAS  Google Scholar 

  14. Sashiwa H, Yamamori N, Ichinose Y, Sunamoto J, Aiba S (2003) Michael reaction of chitosan with various acryl reagents in water. Biomacromolecules 4:1250–1254

    Article  CAS  Google Scholar 

  15. Ma GP, Yang DZ, Zhou YS, Xiao M, Kennedy JF, Nie J (2008) Preparation and characterization of water-soluble N-alkylated chitosan. Carbohydr Polym 74:121–126

    Article  CAS  Google Scholar 

  16. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  17. Elbert DL, Hubbell JA (2001) Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430–441

    Article  CAS  Google Scholar 

  18. Rong HC, Jaan RC, Ju SS (1997) Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr Res 299:287–294

    Article  Google Scholar 

  19. Hasegawa M, Isogai A, Onabe F (1993) Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydr Polym 20:279–283

    Article  CAS  Google Scholar 

  20. Domard A, Cartier N (1989) Glucosamine oligomers: 1. Preparation and characterization. Int J Biol Macromol 11:297–302

    Article  CAS  Google Scholar 

  21. No HK, Kim SH, Lee SH, Park NY, Prinyawiwatkul W (2006) Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr Polym 65:174–178

    Article  CAS  Google Scholar 

  22. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  23. Cai J, Zhang L (2006) Unique Gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  24. Fan M, Hu Q (2009) Chitosan–LiOH–urea aqueous solution—a novel water-based system for chitosan processing. Carbohydr Res 344:944–947

    Article  CAS  Google Scholar 

  25. Li C, Han Q, Guan Y, Zhang Y (2014) Thermal gelation of chitosan in an aqueous alkali-urea solution. Soft Matter 10:8245–8253

    Article  CAS  Google Scholar 

  26. Fan M, Hu Q, Shen K (2009) Preparation and structure of chitosan soluble in wide pH range. Carbohydr Polym 78:66–71

    Article  CAS  Google Scholar 

  27. Hirai A, Odani H, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26:87–94

    Article  CAS  Google Scholar 

  28. Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, Buschmann MD, Gupta A (2003) A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32:1149–1158

    Article  CAS  Google Scholar 

  29. Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. Chem Phys Chem 8:1572–1579

    CAS  Google Scholar 

  30. Song Y, Zhou J, Zhang L, Wu X (2008) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25

    Article  CAS  Google Scholar 

  31. Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364

    Article  CAS  Google Scholar 

  32. Ding F, Shi X, Jiang Z, Liu L, Cai J, Li Z, Chen S, Du Y (2013) Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J Mater Chem B 1:1729–1737

    Article  CAS  Google Scholar 

  33. Wang D, Liu Y, Hu Z, Hong C, Pan C (2005) Michael addition polymerizations of trifunctional amines with diacrylamides. Polymer 46:3507–3514

    Article  CAS  Google Scholar 

  34. Pang HT, Chen XG, Park HJ, Cha DS, Kennedy JF (2007) Preparation and rheological properties of deoxycholate-chitosan and carboxymethyl-chitosan in aqueous systems. Carbohydr Polym 69:419–425

    Article  CAS  Google Scholar 

  35. Zheng M, Han B, Yang Y, Liu W (2011) Synthesis, characterization and biological safety of O-carboxymethyl chitosan used to treat Sarcoma 180 tumor. Carbohydr Polym 86:231–238

    Article  CAS  Google Scholar 

  36. Kurita K, Ikeda H, Yoshida Y, Shimojoh M, Harata M (2001) Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromolecules 3:1–4

    Article  Google Scholar 

  37. Nishimura S, Kohgo O, Kurita K, Kuzuhara H (1991) Chemospecific manipulations of a rigid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications. Macromolecules 24:4745–4748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support for this work from the National Natural Science Foundation of China (Grants Nos. 21174070, 21274068, 21228401 and 21374048), Tianjin Public Health Bureau (13KG110), Program for New Century Excellent Talents in University (NCET-11-0264), and PCSIRT program (IRT1257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Han, Q., Guan, Y. et al. Michael reaction of chitosan with acrylamides in an aqueous alkali–urea solution. Polym. Bull. 72, 2075–2087 (2015). https://doi.org/10.1007/s00289-015-1390-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1390-8

Keywords

Navigation