Skip to main content
Log in

Thermal dehydration and degradation kinetics of heptylidene chitosan

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The thermal dehydration and degradation of chitosan and heptylidene chitosan were studied by differential scanning calorimetry at four different heating rates: 5, 10, 15 and 20 K min−1. The activation energy values of thermal dehydration and degradation of chitosan and heptylidene chitosan were investigated using different isoconversional and maximum rate (peak) methods viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink, Flynn–Wall–Ozawa (FWO) and Bosewell. The variations of activation energy, E α, with conversion function, α, established using these different methods were found to be similar. Compared to the FWO method, the KAS method offers a significant improvement in the accuracy of the E a values. All the maximum rate (peak) methods yielded consistent values of E α for the dehydration and degradation reactions of both chitosan and HEPT-chitosan. From the results, it can be concluded that one can follow the maximum rate (peak) methods to get the value of E α ; however, the complexity of the reaction can be identified only through isoconversional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Degs YS, Tutunji MF, Baker HM (2003) Isothermal and kinetic adsorption behavior of Pb2 + , ions on natural silicate minerals. J Clay Min 38:501–509

    Article  CAS  Google Scholar 

  2. Alvarez-Ayuso E, Garcia-Sanchez A (2003) Removal of heavy metals from waste waters by natural and Na-exchanged bentonites. Clays Clay Min 51:475–480

    Article  CAS  Google Scholar 

  3. Alvarez-Ayuso E, Garcia-Sanchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862

    Article  CAS  Google Scholar 

  4. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314

    Article  CAS  Google Scholar 

  5. Kim JS, Park JC, Yi J (2000) Zinc ion removal from aqueous solutions using modified silica impregnated with 2-ethylhexyl 2-ethylhexyl phosphoric acid. Sep Sci Technol 35:1901–1916

    Article  CAS  Google Scholar 

  6. Peniche C, Carlos E, Roman JS (1998) Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: preparation, characterization and modification by thermal treatment. Polymer 39:6549–6554

    Article  CAS  Google Scholar 

  7. Velyana G, Dilyana Z, Lyubomir V (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Cent J 6:81

    Article  Google Scholar 

  8. de Douglas B (2007) Sergio Paulo C. Kinetics of the thermal degradation of chitosan. Thermochim Acta 465:73–82

    Article  Google Scholar 

  9. Shen-Kun L, Chi-Chih H, Ming-Fung L (2004) A kinetic study of thermal degradations of chitosan/polycaprolactam blends. Macromol Res 12:466–473

    Article  Google Scholar 

  10. Tirkistani FAA (1998) Thermal analysis of some chitosan Schiff bases. Polym Degrad Stab 60:67–70

    Article  CAS  Google Scholar 

  11. Ikejima T, Yogi K, Inonu Y (1999) Thermal properties and crystallization behavior of poly (3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys 200:413–421

    Article  CAS  Google Scholar 

  12. Chun-Yan O, Chao-Hua Z, Si-Dong L, Lei Y, Jing-Jing D, Xue-Liu M, Mu-Ting Z (2010) Thermal degradation kinetics of chitosan–cobalt complex as studied by thermogravimetric analysis. Carbohydr Polym 82:1284–1289

    Article  Google Scholar 

  13. Li Si-Dong, Chao-Hua Z, Jing-Jing D, Chun-Yan O, Wei-Yan Q, Lei Y, Xiao-Dong S (2010) Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohydr Polym 81:182–187

    Article  CAS  Google Scholar 

  14. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81:253–262

    Article  CAS  Google Scholar 

  15. Atanassov A, Genieva S, Vlaev L (2010) Study of the thermooxidative degradation kinetics of tetrafluoroethylene–ethylene copolymer filled with rice husks ash. Polym Plast Technol Eng 49:541–554

    Article  CAS  Google Scholar 

  16. Boonchom B, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4 ·2H2O. Phys B 405:2350–2355

    Article  CAS  Google Scholar 

  17. Boonchom B, Thongkam M (2010) Kinetics and thermodynamics of the formation of MnFeP4O12. J Chem Eng Data 55:211–216

    Article  CAS  Google Scholar 

  18. He W, Deng F, Liao G-X, Lin W, Jiang Y-Y, Jian X-G (2010) Kinetics of thermal degradation of poly(aryl ether) containing phthalazinone and life estimation. J Therm Anal Calorim 100:1055–1062

    Article  CAS  Google Scholar 

  19. Kittur FS, Harish PKV, Udaya SK, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential calorimetry. Carbohydr Polym 49:185–193

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the non-isothermal crystallization of a polymer melt. Macromol Rapid Commun 23:766–770

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Sbirrazzuoli N (2003) Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim 72:681–686

    Article  CAS  Google Scholar 

  22. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional Approach to Evaluating the Hoffman–Lauritzen Parameters (U* and Kg) from the overall rates of non-isothermal crystallization. Macromol Rapid Commun 25:733–738

    Article  CAS  Google Scholar 

  24. Khawam A, Flanagan DR (2005) Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Non-isothermal kinetic studies. Thermochim Acta 436:101–112

    Article  CAS  Google Scholar 

  25. Vyazovkin S (2006) Model-free kinetics, staying free of multiplying entities without necessity. J Therm Anal Calorim 83:45–51

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532

    Article  CAS  Google Scholar 

  27. Starink MJ (2007) Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci 42:483–489

    Article  CAS  Google Scholar 

  28. Simon P (2004) Isoconversional methods. J Therm Anal Calorim 76:123–132

    Article  CAS  Google Scholar 

  29. Akahira T, Sunose T (1969) Trans joint convention of four electrical Institutes, paper no. 246 (1969) Research Report, Chiba Institute of Technology. Sci Technol. 1971(16):22–31

    Google Scholar 

  30. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  31. Aboulkas A, El Harfi K, El Bouadili A, Benchanaa M, Mokhlisse A, Outzourit A (2007) Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 24:15–33

    CAS  Google Scholar 

  32. Murray P, White J (1955) Kinetics of the thermal dehydration of clays. IV. Thermal analysis of the clay minerals. Trans Brit Ceram Soc 54:204–238

    CAS  Google Scholar 

  33. Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43

    Article  CAS  Google Scholar 

  34. Starink MJ (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta 288:97–104

    Article  CAS  Google Scholar 

  35. Flynn J, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  36. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  37. Doyle C (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292

    Article  CAS  Google Scholar 

  38. Boswell PG (1980) On the calculation of activation energies using a modified Kissinger method. J Therm Anal 18:353–358

    Article  CAS  Google Scholar 

  39. Muraleedharan K, Kripa S (2014) Thermal dehydration kinetics of potassium bis (oxalato) cuprate (II) dehydrate. J Anal Appl Pyrol 107:298–305

    Article  CAS  Google Scholar 

  40. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data—Review. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  42. Rao CNR (1963) Chemical applications of infra red spectroscopy. Academic Press, New York, p 365

    Google Scholar 

  43. Starink MJ, Van Mourik P (1992) Cooling and heating rate dependence of precipitation in an Al–Cu alloy. Mater Sci Eng A 156:183–194

    Article  Google Scholar 

  44. Starink MJ (1997) On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature dependent equilibrium state. J Mater Sci 32:6505–6512

    Article  CAS  Google Scholar 

  45. Muraleedharan K, Kripa S (2014) DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim 115:1969–1978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Abdul Mujeeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraleedharan, K., Alikutty, P. & Abdul Mujeeb, V.M. Thermal dehydration and degradation kinetics of heptylidene chitosan. Polym. Bull. 72, 809–819 (2015). https://doi.org/10.1007/s00289-015-1306-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1306-7

Keywords

Navigation