Skip to main content
Log in

Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biodegradable PCL-base d nanocomposites were successfully prepared by melt mixing of the poly(ε-caprolactone) with two organo-modified Algerian montmorillonites by the cation exchange reactions with two quaternary ammonium surfactants, namely hexadecyl trimethyl ammonium chloride (OMMT1) and hexadecyl pyridinium chloride (OMMT2), with the aim to elaborate antimicrobial PCL/nanoclay composite films with enhanced properties for food packaging applications. PCL-based nanocomposite films containing either OMMT1 or OMMT2 organoclays have displayed mainly intercalated structures as attested by X-ray diffraction patterns and transmission electron microscope images. Glass transition (T g) and melting (T m) temperatures of these materials, evaluated by differential scanning calorimetry analysis, were remained almost unchanged. In addition, their thermal stabilities, observed by thermogravimetric analysis, were slightly decreased as compared to the neat PCL matrix. The antibacterial performance of PCL/OMMT1 and PCL/OMMT2 composite films against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) was assessed by counting the number of bacteria in the sample. A significant decrease in the number of bacteria is noticed after the addition of 3 wt% of OMMT to the matrix, where a maximum of 94 % of growth inhibition can be reached. Furthermore, these PCL/OMMT nanocomposites have showed an interesting improvement in their several properties that are strategically studied in packaging applications. The Young modulus has increased by 36 and 22 % for (PCL/OMMT1) and (PCL/OMMT2), respectively. Also, the water vapor permeability has decreased by 56 % for (PCL/OMMT1) and 48 % for (PCL/OMMT2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ludueña L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym 87:411–421

    Article  Google Scholar 

  2. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  3. Briassoulis D (2004) An overview on the mechanical behaviour of biodegradable agricultural films. J Polym Environ 12:65–81

    Article  CAS  Google Scholar 

  4. Ahmed J, Auras R, Kijchavengkul T, Varshney SK (2012) Rheological, thermal and structural behavior of poly(ε-caprolactone) and nanoclay blended films. J Food Eng 111:580–589

    Article  CAS  Google Scholar 

  5. Gumus S, Ozkoc G, Aytac A (2012) Plasticized and unplasticized PLA/organoclay nanocomposites: short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J Appl Polym Sci 123:2837–2848

    Article  CAS  Google Scholar 

  6. Yang F, Qiu Z (2011) Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. Appl Polym Sci 119:1426–1434

    Article  CAS  Google Scholar 

  7. Arora A, Padua GW (2010) Nanocomposites in food packaging. J Food Sci 75:R43–R49

    Article  CAS  Google Scholar 

  8. Dong Y, Bhattacharyya D (2008) Effects of clay type, clay/compatibiliser content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Compos Part A Appl Sci Manuf 39:1177–1191

    Article  Google Scholar 

  9. Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2008) The role of the MMT on the morphology and mechanical properties of PP/PET blends. Compos Sci Technol 68:2193–2200

    Article  CAS  Google Scholar 

  10. Santos KS, Liberman SA, Oviedo MAS, Mauler RS (2009) Optimization of the mechanical properties of polypropylene-based nanocomposite via the addition of a combination of organoclays. Compos Part A Appl Sci Manuf 40:1199–1209

    Article  Google Scholar 

  11. Livi S, Duchet-Rumeau J, Pham TN, Gérard JF (2010) A comparative study on different ionic liquids used as surfactants: effect on thermal and mechanical properties of high density polyethylene nanocomposites. J Colloid Interface Sci 349:424–433

    Article  CAS  Google Scholar 

  12. Dintcheva NT, Al-Malaika S, La Mantia FP (2009) Effect of extrusion and photooxidation on PE–clay nanocomposites. Polym Degrad Stab 94:1571–1588

    Article  CAS  Google Scholar 

  13. Rohlmann CO, Horst MF, Quinzani LM, Failla MD (2008) Comparative analysis of nanocomposites based on polypropylene and different montmorillonites. Eur Polym J 44:2749–2760

    Article  CAS  Google Scholar 

  14. Chauhan GS, Singh B, Dhiman SK (2004) Functionalization of poly(4-vinyl)pyridine grafted cellulose by quaternization reactions and a study on the properties of postquaternized copolymers. J Appl Polym Sci 91:2454–2564

    Article  CAS  Google Scholar 

  15. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Article  CAS  Google Scholar 

  16. Sauvet G, Dupond S, Kazmierski K, Chojnowski J (2000) Biocidal polymers active by contact. V. Synthesis of polysiloxanes with biocidal activity. J Appl Polym Sci 75:1005–1012

    Article  CAS  Google Scholar 

  17. Hong SI, Rhim JW (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8:5818–5824

    Article  CAS  Google Scholar 

  18. Del NMA, Contea A, Buonocore GG, Incoronato AL, Massaro A, Panza O (2009) Active packaging by extrusion processing of recyclable and biodegradable polymers. J Food Eng 93:1–6

    Article  Google Scholar 

  19. Joseph CS, Prashanth HKV, Rastogi NK, Indiramma AR, Reddy SY, Raghavarao KSMS (2011) Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technol 4:1179–1185

    Article  CAS  Google Scholar 

  20. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  21. Alix S, Mahieu A, Terrie C, Soulestin J, Gerault E, Feuilloley MGJ, Gattin R, Edon V, Ait-Younes T, Leblanc N (2013) Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications. Eur Polym J 49:1234–1242

    Article  CAS  Google Scholar 

  22. Khatiwala VK, Shekhar N, Aggarwal S, Mandal UK (2008) Biodegradation of poly(ε-caprolactone) (PCL) film by Alcaligenes faecalis. J Polym Environ 16:61–67

    Article  CAS  Google Scholar 

  23. Lei Y, Rai B, Ho KH, Teoh SH (2007) In vitro degradation of novel bioactive polycaprolactone-20 % tricalcium phosphate composite scaffolds for bone engineering. Mater Sci Eng C 27:293–298

    Article  CAS  Google Scholar 

  24. Rai B, Teoh SH, Ho KH (2005) An evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. J Control Release 107:330–342

    Article  CAS  Google Scholar 

  25. Khan R, Beck S, Dussault D, Salmieri S, Bouchard J, Lacroix M (2013) Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: effect of gamma radiation. J Appl Polym Sci 110:3038–3046

    Article  Google Scholar 

  26. Martínez-Abad A, Sánchez G, Fuster V, Lagarón JM (2013) Antibacterial performance of solvent cast poly caprolactone (PCL) films containing essential oils. Food Control 34:214–220

    Article  Google Scholar 

  27. Sánchez-García MD, Ocio MJ, Gimenez E, Lagarón JM (2008) Novel poly caprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. J Plast Film Sheeting 24:239–251

    Article  Google Scholar 

  28. Huang Y, Liu H, He P, Yuan L, Xiong H, Xu Y, Yu Y (2010) Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites. J Appl Polym Sci 116:2119–2125

    Article  CAS  Google Scholar 

  29. Di Y, Iannace S, Di Maio E, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci B 41:670–678

    Article  CAS  Google Scholar 

  30. Ludueña LN, Vazquez A, Alvarez VA (2013) Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Polym Sci 128:2648–2657

    Article  Google Scholar 

  31. Ludueňa LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460:121–129

    Article  Google Scholar 

  32. Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P (2002) Poly(ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43:4017–4023

  33. Labidi S, Azema N, Perrin D, Cuesta JML (2010) Organo-modified montmorillonite/poly(-caprolactone) nanocomposites prepared by melt intercalation in a twin-screw extruder. Polym Degrad Stab 95:382–388

    Article  CAS  Google Scholar 

  34. Ratinac KR, Gilbert RG, Ye L, Jones AS, Ringer SP (2006) The effects of processing and organoclay properties on the structure of poly(methyl methacrylate)-clay nanocomposites. Polymer 47:6337–6361

    Article  CAS  Google Scholar 

  35. Chiu YC, Huang LN, Vang CM, Huang JF (1990) Determination of cation exchange capacity of clay minerals by potentiometric titration using divalent cation electrodes. Colloid Surf 46:327–337

    Article  CAS  Google Scholar 

  36. Ferfera-Harrar H, Dairi N (2013) Elaboration of cellulose acetate nano-biocomposites using acidified gelatin-montmorillonite as nanofiller. Morphology, properties and biodegradation studies. Polym Compos 34:1515–1524

    Article  CAS  Google Scholar 

  37. Corre YM, Bruzaud S, Audic JL, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31:226–235

    Article  CAS  Google Scholar 

  38. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation. J Mater Res 7:1564

    Article  CAS  Google Scholar 

  39. Zaidi L, Bruzaud S, Bourmaud A, Médéric P, Kaci M, Grohens Y (2010) Relationship between structure and rheological, mechanical and thermal properties of polylactide/Cloisite 30B nanocomposites. J Appl Polym Sci 116:1357–1365

    CAS  Google Scholar 

  40. Praus P, Turicová M, Študentová S, Ritz M (2006) Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. J Colloid Interface Sci 304:29–36

    Article  CAS  Google Scholar 

  41. Pospíšil M, Apková PC, Merínská D, Malác Z, Šimoník J (2001) Intercalation of octadecylamine into montmorillonite; molecular simulations and XRD analysis. J Colloid Interface Sci 236:127–131

    Article  Google Scholar 

  42. Hackett E, Manias E, Giannelis EP (1998) Molecular dynamics simulations of organically modified layered silicates. J Chem Phys 108:7410–7415

    Article  CAS  Google Scholar 

  43. Jiang S, Ji X, An L, Jiang B (2001) Crystallization behavior of PCL in hybrid confined environment. Polymer 42:3901–3907

    Article  CAS  Google Scholar 

  44. Rittigstein P, Torkelson JM (2006) Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci Part B Polym Phys 44:2935–2943

    Article  CAS  Google Scholar 

  45. Luduena LN, Kenny JM, Vazquez A, Alvarez VA (2011) Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mat Sci Eng A 529:215–223

    Article  CAS  Google Scholar 

  46. Pitt CG, Chaslow FI, Hibionada YN (1981) Aliphatic polyesters. I. The degradation of poly(ε-caprolactone) in vivo. J Appl Polym Sci 26:3779–3787

    Article  CAS  Google Scholar 

  47. Li Y, Han C, Bian J, Zhang X, Han L, Dong LL (2013) Crystallization and morphology studies of biodegradable poly(ε-caprolactone)/silica nanocomposites. Polym Compos 34:131–140

    Article  Google Scholar 

  48. Persenaire O, Alexandre M, Degee P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly(epsilon-caprolactone). Biomacromolecules 2:288–294

    Article  CAS  Google Scholar 

  49. Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92:425–436

    Article  CAS  Google Scholar 

  50. Fukushima K, Tabuani D, Camino G (2009) Mat Sci Eng C 29:1433

    Article  CAS  Google Scholar 

  51. Shukla SR, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91:1850–1854

    Article  CAS  Google Scholar 

  52. Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M (2004) Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials 25:2029–2037

    Article  CAS  Google Scholar 

  53. Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym 131:39747–39761

    Article  Google Scholar 

  54. Malachová K, Praus P, Pavlíčková Z, Turicová M (2009) Activity of antibacterial compounds immobilised on montmorillonite. Appl Clay Sci 43:364–368

    Article  Google Scholar 

  55. Senuma M, Tashiro T, Iwakura M, Kaeriyamd K, Shimura Y (1989) Synthesis and antibacterial activity of copolymers having a quaternary ammonium salt side group. J Appl Polym Sci 37:2837–2843

    Article  CAS  Google Scholar 

  56. Nurdin N, Helary G, Sauvet G (1993) Biocidal polymers active by contact. II. Biological evaluation of polyurethane coatings with pendant quaternary ammonium salts. J Appl Polym Sci 50:663–670

    Article  CAS  Google Scholar 

  57. Hazziza-Laskar J, Nurdin N, Helary G, Sauvet G (1993) Biocidal polymers active by contact. I. Synthesis of polybutadiene with pendant quaternary ammonium groups. J Appl Polym Sci 50:651–662

    Article  CAS  Google Scholar 

  58. Merianos JJ (1991) Quaternary ammonium antimicrobial compounds. In: Block S (ed) Disinfection, sterilization, and preservation. Lea and Febiger, Philadelphia

    Google Scholar 

  59. Breen PJ, Compadre CM, Fifer EK, Salari H, Serbus DD, Lattin DL (1995) Quaternary ammonium compounds inhibit and reduce the attachment of viable Salmonella typhimurium to poultry tissues. J Food Sci 60:1191–1196

    Article  CAS  Google Scholar 

  60. Stotzky GJ (1989) Gene transfer among bacteria in soil. In: Levy SB, Miller RV (eds) Gene transfer in the environment. Mc Graw-Hill, New York, pp 165–222

    Google Scholar 

  61. Herrera P, Burghardt RC, Phillips TD (2000) Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Vet Microbiol 74:259–272

    Article  CAS  Google Scholar 

  62. Janigova I, Lednicky F, Moskova DJ, Chodak I (2011) Nanocomposites with biodegradable polycaprolactone matrix. Macromol Symp 301:1–8

    Article  CAS  Google Scholar 

  63. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  64. Aznizam A, Kee W, Siti W, Abdul G (2012) Flexural and impact properties of poly(vinyl chloride) and acrylic-impact modified poly(vinyl chloride) composite filled with poly(methyl methacrylate) grafted to oil palm empty fruit bunches. Inter J Polym Mater 61:263–275

    Article  Google Scholar 

  65. Tolga G, Fehim F, Huseyin U, Abdullah M (2012) Extension in shelf life of fresh food using nanomaterials food packages. Polym Plast Technol Eng 51:701–706

    Article  Google Scholar 

  66. Rezgui F, Swistek M, Hiver JM, G’Sell C, Sadoun T (2005) Deformation and damage upon stretching of degradable polymers (PLA and PCL). Polymer 46:7370–7385

    Article  CAS  Google Scholar 

  67. Catledge SA, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky AV, Koopman M, Vohra YK (2007) An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater 2:142–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the microbiology laboratory of Laboratories Merinal SARL in Algeria for provision of the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Siham Hadj-Hamou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H. et al. Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym. Bull. 72, 235–254 (2015). https://doi.org/10.1007/s00289-014-1269-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1269-0

Keywords

Navigation