Skip to main content
Log in

Toughening of PA6/EPDM-g-MAH/HDPE ternary blends via controlling EPDM-g-MAH grafting degree: the role of core–shell particle size and shell thickness

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The formation of core–shell morphology for composite droplet polymer-blend systems containing a polyamide-6 (PA6) matrix, MAH grafted ethylene–propylene–diene rubber (EPDM-g-MAH) shell and high-density polyethylene (HDPE) core was studied. Core–shell morphology with various shell thickness of blends was controlled via adding EPDM-g-MAH with varying grafting degree. Smaller size of core–shell composite droplets and thicker EPDM-g-MAH shell are formed in PA6/EPDM-g-MAH/HDPE ternary blends with lower grafting degree of EPDM-g-MAH and the corresponding Izod impact strength reaches a optimal value of 35.7 kJ/m2, which is almost 9–10 times higher than pure PA6 (3.6 kJ/m2). Further, the toughening mechanism was proposed and the results showed that the thicker EPDM-g-MAH shell can better transfer the stress between polymer matrix and dispersed phase particles, resulting in easier fibrillation progress of dispersed phase particles, which absorbs a significant amount of impact energy. However, for the blends with higher grafting degree of EPDM-g-MAH, during impact processing the easier deformation of the thinner EPDM-g-MAH shell caused overlarge cavitations and naked/debonding fiber or spherical dispersed particles, which reduces the Izod impact strength of blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shirin S, Ahmad A (2009) A review on ternary immiscible polymer blends: morphology and effective parameters. Polym Adv Technol 20:433–447

    Article  Google Scholar 

  2. Tchomakov KP, Favis BD, Michel A (2005) Mechanical properties and morphology of ternary PP/EPDM/PE blends. Polym Eng Sci 83:300–309

    CAS  Google Scholar 

  3. Hemmati M, Nazokdast H, Shariat Panahi H (2001) Study on morphology of ternary polymer blends. II. Effect of composition. J Appl Polym Sci 82:1138–1146

    Article  CAS  Google Scholar 

  4. Hemmati M, Nazokdast H, Shariat Panahi H (2001) Study on morphology of ternary polymer blends. I. Effects of melt viscosity and interfacial interaction. J Appl Polym Sci 82:1129–1137

    Article  CAS  Google Scholar 

  5. Luzinov I, Pagnoulle C, Jerome R (2000) Dependence of phase morphology and mechanical properties of PS/SBR/PE ternary blends on composition: transition from core–shell to triple-phase continuity structures. Polymer 41:3381–3389

    Article  CAS  Google Scholar 

  6. Wilkinson A, Clemens ML, Harding VM (2004) The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends. Polymer 45:5239–5249

    Article  CAS  Google Scholar 

  7. Valera TS, Morita AT, Demarquette NR (2006) Study of morphologies of PMMA/PP/PS ternary blends. Macromolecules 39:2663–2675

    Article  CAS  Google Scholar 

  8. Wang D, Li Y, Xie XM, Guo BH (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200

    Article  CAS  Google Scholar 

  9. Ha MH, Kim BK, Kim EY (2004) Effects of dispersed phase composition on thermoplastic polyolefins. J App Polym Sci 93:179–188

    Article  CAS  Google Scholar 

  10. Jazani OM, Arefazar A, Jafari SH (2011) A study on the effects of SEBS-g-MAH on the phase morphology and mechanical properties of polypropylene/polycarbonate/SEBS ternary polymer blends. J App Polym Sci 121:2680–2687

    Article  CAS  Google Scholar 

  11. Geng CZ, Su JJ, Han SJ, Wang K, Fu Q (2013) Hierarchical structure and unique impact behavior of polypropylene/ethylene–octene copolymer blends as obtained via dynamic packing injection molding. Polymer 54:3392–3401

    Article  CAS  Google Scholar 

  12. Michler GH (1992) Kunststoff-Mikromechanik: Morphologie, Deformationsund Bruchmechanismen. Hanser, Munich

    Google Scholar 

  13. Btinis N, Verdejo R, Cassagnau P, Manchado MAL (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831

    Article  Google Scholar 

  14. Dadfar MR, Ghadami F (2013) Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Mater Des 47:16–20

    Article  CAS  Google Scholar 

  15. Yin B, Li LP, Zhou Y, Gong L, Yang MB, Xie BH (2013) Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core–shell particles formed in melt processing on preventing micro-crack propagation. Polymer 54:1938–1947

    Article  CAS  Google Scholar 

  16. Kim GM (1996) Ph.D. Thesis, Martin Luther University, Halle-Wittenberg, Germany

  17. Riew CK, Rowe EH, Siebert AR (1976) Toughness and brittleness of plastics. Advances in Chemistry Series, American Chemical Society, Washington, DC. No. 154

  18. Lin Y, Chen HB, Chan MC, Wu JS (2008) High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41:9204–9213

    Article  CAS  Google Scholar 

  19. Gonzalez I, Eguiazabal JI, Nazabal J (2012) Attaining high electrical conductivity and toughness in PA6 by combined addition of MWCNT and rubber. Compos Part A Appl Sci Manuf 43:1482–1489

    Article  CAS  Google Scholar 

  20. Kinloch AJ, Show SJ, Hunston DL (1983) Deformation and fracture behavior of a rubber-toughened epoxy: 2. Failure criteria. Polymer 24:1355–1363

    Article  CAS  Google Scholar 

  21. Kinloch AJ, Guild FJ (1996) Predictive modeling of the properties and toughness of rubber-toughened epoxies. In: Riew CK, Kinloch AJ (eds) Toughened plastics II. American Chemical Society, Washington, DC, pp 1–25

    Chapter  Google Scholar 

  22. Dasari A, Zhang QX, Yu ZZ, Mai YW (2010) Toughening polypropylene and its nanocomposites with submicrometer voids. Macromolecules 43:5734–5739

    Article  CAS  Google Scholar 

  23. Ma LF, Wang WK, Bao RY, Yang W, Xie BH, Yang MB (2013) Toughening of polypropylene with b-nucleated thermoplastic vulcanizates based on polypropylene/ethylene–propylene–diene rubber blends. Mater Des 33:536–543

    Article  Google Scholar 

  24. Kim GM, Michler GH, Rosch J (1998) Micromechanical deformation processes in toughened PP/PA/SEBS-g-MA blends prepared by reactive processing. Acta Polym 49:88–95

    Article  CAS  Google Scholar 

  25. Li LP, Yin B, Zhou Y et al (2012) Characterization of PA6/EPDM-g-MA/HDPE ternary blends: the role of core–shell structure. Polymer 53:3043–3051

    Article  CAS  Google Scholar 

  26. Dou R, Wang W, Zhou Y, Li LP, Gong L, Yin B, Yang MB (2012) Effect of core–shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129:253–261

    Article  Google Scholar 

  27. ASTM D638-10 (1990) Standard test method for tensile properties of plastics. Annual book of ASTM standard, vol 8(1), p 155

  28. ASTM D256-05 (1990) Standard test method for impact resistant of plastic and electrical insulation materials. Annual book of ASTM standard, vol 8(1), p 57

  29. Hillmyer MA, Bates FS (1996) Synthesis and characterization of model polyalkane–poly(ethylene oxide) block copolymers. Macromolecules 29:6994–7002

    Article  CAS  Google Scholar 

  30. Sue HJ (1991) Study of rubber-modified brittle epoxy systems. Part I: fracture toughness measurements using the double-notch four-point-bend method. Polym Eng Sci 31:270–274

    Article  CAS  Google Scholar 

  31. Sue HJ, Yee AF (1993) Study of fracture mechanisms of multiphase polymers using the double-notch four-point-bending method. J Mater Sci 28:2975–2980

    Article  CAS  Google Scholar 

  32. Holik AS, Kambour RP, Hobbs SY, Fink DG (1979) Microstruct Sci 7:357

    CAS  Google Scholar 

  33. Grigoryeva OP, Karger-Kocsis J (2000) Melt grafting of maleic anhydride onto an ethylene propylene diene terpolymer (EPDM). Eur Polym J 36:1419–1429

    Article  CAS  Google Scholar 

  34. Ma LF, Wei XF, Zhang Q, Wang WK, Gu L, Yang W, Xie BH, Yang MB (2012) Toughening of polyamide 6 with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene–propylene–diene rubber grafted with maleic anhydride blends. Mater Des 33:104–110

    Article  CAS  Google Scholar 

  35. Reignier J, Favis BD (2000) Control of the subinclusion microstructure in HDPE/PS/PMMA ternary blends. Macromolecules 33:6998–7008

    Article  CAS  Google Scholar 

  36. Roeder J, Oliveira RVB, Goncalves MC, Soldi V, Pires ATN (2002) Polypropylene/polyamide-6 blends: influence of compatibilizing agent on interface domains. Polym Test 21:815–821

    Article  CAS  Google Scholar 

  37. Coban O, Bora MO, Sinmazcelik T, Curgul I, Gunay V (2009) Fracture morphology and deformation characteristics of repeatedly impacted thermoplastic matrix composites. Mater Des 30:628–634

    Article  CAS  Google Scholar 

  38. Yang G, Han L, Haifeng D (2011) Fracture resistance improvement of polypropylene by joint action of core–shell particles and nucleating agent. Mater Sci Eng A Struct 528:1382–1390

    Article  Google Scholar 

  39. Afshar A, Massoumi I, Lesan-Khosh R, Bagheri R (2010) Fracture behavior dependence on load-bearing capacity of filler in nano- and microcomposites of polypropylene containing calcium carbonate. Mater Des 31:802–807

    Article  CAS  Google Scholar 

  40. Ravati R, Favis BD (2010) Morphological states for a ternary polymer blend demonstrating complete wetting. Polymer 51:4547–4561

    Article  CAS  Google Scholar 

  41. Moini Jazani O, Arefazar A (2011) A study on the effects of SEBS-g-MAH on the phase morphology and mechanical properties of polypropylene/polycarbonate/SEBS ternary polymer blends. J Appl Polym Sci 121:2680–2687

    Article  Google Scholar 

  42. Ravati R, Favis BD (2013) Tunable morphologies for ternary blends with poly(butylene succinate): partial and complete wetting phenomena. Polymer 54:3271–3281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Key Basic Research Program of China (973 Program, No. 2012CB025902), the Fundamental Research Funds for the Central Universities (No. 2013SCU04A03) and the National Natural Science Foundation of China (Contract No. 51273219) and financially supported by State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2014-3-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, R., Zhou, Y., Shen, C. et al. Toughening of PA6/EPDM-g-MAH/HDPE ternary blends via controlling EPDM-g-MAH grafting degree: the role of core–shell particle size and shell thickness. Polym. Bull. 72, 177–193 (2015). https://doi.org/10.1007/s00289-014-1266-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1266-3

Keywords

Navigation