Skip to main content
Log in

Preparation, characterization, in vitro release, and pharmacokinetic studies of curcumin-loaded mPEG–PVL nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Curcumin shows several pharmacological activities with low toxicity, but its low water solubility limits its usage. To overcome these drawback, methoxy poly(ethylene glycol)-b-poly (\(\delta\)-valerolactone) was synthesized through ring-opening polymerization with mPEG and \(\delta\)-valerolactone as raw materials and hydrochloride ethyl ether as catalyst. The nanoparticles were developed by thin-film hydration and used as the delivery system for curcumin. The pharmacokinetics, in vitro release and safety of curcumin-loaded nanoparticles were evaluated. The results showed that nanoparticles had high drug-loading capacity (11.70 %) and entrapment efficiency (92.66 %). The water solubility of curcumin was increased to 1.851 mg/mL, which was approximately 1.73 × 105 times higher than that of free curcumin. The plasma AUC0–∞ and V z of curcumin-loaded nanoparticles were 3.60- and 4.56-fold higher than that of curcumin control solution, respectively. The CLz of curcumin-loaded nanoparticles was decreased by 3.60-fold. The MRT0–∞ changed from 0.284 to 4.657 h. Hemolysis test results revealed that the mPEG–PVL was safe for intravenous injection. These results clearly showed that the curcumin-loaded nanoparticles were suitable to be a delivery vehicle for curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087. doi:10.1016/j.lfs.2005.12.007

    Article  CAS  Google Scholar 

  2. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75(6):742–750. doi:10.1002/jnr.20025

    Article  CAS  Google Scholar 

  3. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818. doi:10.1021/mp700113r

    Article  CAS  Google Scholar 

  4. Letchford K, Liggins R, Burt H (2008) Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci 97(3):1179–1190. doi:10.1002/jps.21037

    Article  CAS  Google Scholar 

  5. Lu J, Owen SC, Shoichet MS (2011) Stability of self-assembled polymeric micelles in serum. Macromolecules 44(15):6002–6008. doi:10.1021/ma200675w

    Article  CAS  Google Scholar 

  6. Feng R, Song Z, Zhai G (2012) Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int J Nanomed 7:4089–4098. doi:10.2147/IJN.S33607

    Article  CAS  Google Scholar 

  7. Zheng X, Kan B, Gou M, Fu S, Zhang J, Men K, Chen L, Luo F, Zhao Y, Zhao X, Wei Y, Qian Z (2010) Preparation of MPEG–PLA nanoparticle for honokiol delivery in vitro. Int J Pharm 386(1–2):262–267. doi:10.1016/j.ijpharm.2009.11.014

    Article  CAS  Google Scholar 

  8. Gao C, Pan J, Lu W, Zhang M, Zhou L, Tian J (2009) In-vitro evaluation of paclitaxel-loaded MPEG–PLGA nanoparticles on laryngeal cancer cells. Anticancer Drugs 20(9):807–814. doi:10.1097/CAD.0b013e328330c811

    Article  CAS  Google Scholar 

  9. Qiu JF, Gao X, Wang BL, Wei XW, Gou ML, Men K, Liu XY, Guo G, Qian ZY, Huang MJ (2013) Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone) micelles for the solubilization and in vivo delivery of luteolin. Int J Nanomed 8:3061–3069. doi:10.2147/IJN.S45062

    Google Scholar 

  10. Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK (2010) Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine 5(3):433–449. doi:10.2217/nnm.10.9

    Article  CAS  Google Scholar 

  11. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3(4):1558–1567. doi:10.1039/c0nr00758g

    Article  CAS  Google Scholar 

  12. Shao J, Zheng D, Jiang Z, Xu H, Hu Y, Li X, Lu X (2011) Curcumin delivery by methoxy polyethylene glycol-poly(caprolactone) nanoparticles inhibits the growth of C6 glioma cells. Acta Biochim Biophys Sin (Shanghai) 43(4):267–274. doi:10.1093/abbs/gmr011

    Article  CAS  Google Scholar 

  13. Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, Gao X, Wang B, Sun L, Chen Y, Li Y, Liu L, Qian Z, Wei Y (2013) Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 34(4):1413–1432. doi:10.1016/j.biomaterials.2012.10.068

    Article  CAS  Google Scholar 

  14. Yin HT, Zhang DG, Wu XL, Huang XE, Chen G (2013) In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model. Asian Pac J Cancer Prev 14(1):409–412

    Article  Google Scholar 

  15. Chang Y-C, Chu I-M (2008) Methoxy poly(ethylene glycol)-b-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur Polym J 44(12):3922–3930. doi:10.1016/j.eurpolymj.2008.09.021

    Article  CAS  Google Scholar 

  16. Lee H, Zeng F, Dunne M, Allen C (2005) Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules 6(6):3119–3128. doi:10.1021/bm050451h

    Article  CAS  Google Scholar 

  17. Wang Y, Wang C, Gong C, Guo G, Luo F, Qian Z (2012) Polysorbate 80 coated poly (varepsilon-caprolactone)-poly (ethylene glycol)-poly (varepsilon-caprolactone) micelles for paclitaxel delivery. Int J Pharm 434(1–2):1–8. doi:10.1016/j.ijpharm.2012.05.015

    CAS  Google Scholar 

  18. Song Z, Feng R, Sun M, Guo C, Gao Y, Li L, Zhai G (2011) Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 354(1):116–123. doi:10.1016/j.jcis.2010.10.024

    Article  CAS  Google Scholar 

  19. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5):4131–4144. doi:10.1021/nn200809t

    Article  CAS  Google Scholar 

  20. Dutta P, Dey J (2011) Drug solubilization by amino acid based polymeric nanoparticles: characterization and biocompatibility studies. Int J Pharm 421(2):353–363. doi:10.1016/j.ijpharm.2011.10.011

    Article  CAS  Google Scholar 

  21. Lin YL, Liu YK, Tsai NM, Hsieh JH, Chen CH, Lin CM, Liao KW (2012) A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomedicine 8(3):318–327. doi:10.1016/j.nano.2011.06.011

    Article  CAS  Google Scholar 

  22. Podaralla S, Averineni R, Alqahtani M, Perumal O (2012) Synthesis of novel biodegradable methoxy poly(ethylene glycol)–zein micelles for effective delivery of curcumin. Mol Pharm 9(9):2778–2786

    Article  CAS  Google Scholar 

  23. Li Y, Xu X, Shen Y, Qian C, Lu F, Guo S (2013) Preparation and evaluation of copolymeric micelles with high paclitaxel contents and sustained drug release. Colloids Surf A 429:12–18

    Article  CAS  Google Scholar 

  24. Ma Z, Shayeganpour A, Brocks DR, Lavasanifar A, Samuel J (2007) High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed Chromatogr 21(5):546–552. doi:10.1002/bmc.795

    Article  CAS  Google Scholar 

  25. Fang L-N, Chen X-H, Song Z, Wang G, Zhao X, Ren L, Gong P, Bi K-S (2009) Development of a high performance liquid chromatography method for quantification of PAC-1 in rat plasma. J Pharm Biomed Anal 49(2):447–450. doi:10.1016/j.jpba.2008.11.024

    Article  CAS  Google Scholar 

  26. Lee H, Zeng F, Dunne M, Allen C (2005) Methoxy Poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules 6(6):3119–3128. doi:10.1021/bm050451h%/AmericanChemicalSociety

  27. Zhou S, Deng X, Yang H (2003) Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials 24(20):3563–3570

    Article  CAS  Google Scholar 

  28. Jia W, Gu Y, Gou M, Dai M, Li X, Kan B, Yang J, Song Q, Wei Y, Qian Z (2008) Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug Deliv 15(7):409–416. doi:10.1080/10717540802321727

    Article  CAS  Google Scholar 

  29. Yallapu MM, Jaggi M, Chauhan SC (2010) Beta-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 79(1):113–125. doi:10.1016/j.colsurfb.2010.03.039

    Article  CAS  Google Scholar 

  30. Mohanty C, Sahoo SK (2010) The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31(25):6597–6611. doi:10.1016/j.biomaterials.2010.04.062

    Article  CAS  Google Scholar 

  31. Zhang Y, Tang L, Sun L, Bao J, Song C, Huang L, Liu K, Tian Y, Tian G, Li Z, Sun H, Mei L (2010) A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater 6(6):2045–2052. doi:10.1016/j.actbio.2009.11.035

    Article  CAS  Google Scholar 

  32. Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Jayakumar R (2012) Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug Delivery. J Biomater Sci Polym Ed 23(11):1381–1400. doi:10.1163/092050611x581534

    CAS  Google Scholar 

  33. Donsi F, Wang Y, Li J, Huang Q (2010) Preparation of curcumin sub-micrometer dispersions by high-pressure homogenization. J Agric Food Chem 58(5):2848–2853. doi:10.1021/jf903968x

    Article  CAS  Google Scholar 

  34. Yen FL, Wu TH, Tzeng CW, Lin LT, Lin CC (2010) Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem 58(12):7376–7382. doi:10.1021/jf100135h

    Article  CAS  Google Scholar 

  35. Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym 83(2):452–461. doi:10.1016/j.carbpol.2010.08.008

    Article  CAS  Google Scholar 

  36. Anitha A, Deepagan VG, Rani VVD, Menon D, Nair SV, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym 84(3):1158–1164. doi:10.1016/j.carbpol.2011.01.005

    Article  CAS  Google Scholar 

  37. Zhu W, Xie W, Tong X, Shen Z (2007) Amphiphilic biodegradable poly(CL-b-PEG-b-CL) triblock copolymers prepared by novel rare earth complex: Synthesis and crystallization properties. Eur Polym J 43(8):3522–3530. doi:10.1016/j.eurpolymj.2007.04.024

    Article  CAS  Google Scholar 

  38. Cerda-Cristerna BI, Flores H, Pozos-Guillén A, Pérez E, Sevrin C, Grandfils C (2011) Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers. J Controlled Release 153(3):269–277. doi:10.1016/j.jconrel.2011.04.016

    Article  CAS  Google Scholar 

  39. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S (2010) DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. Aaps J 12(3):263–271. doi:10.1208/s12248-010-9185-1

    Article  Google Scholar 

  40. Puga AM, Rey-Rico A, Magarinos B, Alvarez-Lorenzo C, Concheiro A (2012) Hot melt poly-epsilon-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomater 8(4):1507–1518. doi:10.1016/j.actbio.2011.12.020

    Article  CAS  Google Scholar 

  41. Zheng H, Zhang X, Yin Y, Xiong F, Gong X, Zhu Z, Lu B, Xu P (2011) In vitro characterization, and in vivo studies of crosslinked lactosaminated carboxymethyl chitosan nanoparticles. Carbohydr Polym 84(3):1048–1053. doi:10.1016/j.carbpol.2010.12.067

    Article  CAS  Google Scholar 

  42. Ghosh M, Ryan RO (2013) ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells. Nanomedicine (Lond). doi:10.2217/nnm.13.35

    Google Scholar 

  43. Rosler A, Vandermeulen GW, Klok HA (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53(1):95–108 (S0169-409X(01)00222-8)

    Article  CAS  Google Scholar 

  44. Li S-D, Huang L (2008) Pharmacokinetics and Biodistribution of Nanoparticles. Mol Pharm 5(4):496–504. doi:10.1021/mp800049w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Excellent Young and Middle-aged Scientist Award Fund of Shandong Province, China (BS2011CL006) and Scientific Research Fund of University of Jinan (XKY1208).

Conflict of interest

The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runliang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Zhu, W., Yang, F. et al. Preparation, characterization, in vitro release, and pharmacokinetic studies of curcumin-loaded mPEG–PVL nanoparticles. Polym. Bull. 72, 75–91 (2015). https://doi.org/10.1007/s00289-014-1260-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1260-9

Keywords

Navigation