Skip to main content
Log in

Thermo- and pH-sensitivity of poly(N-vinylcaprolactam-co-maleic acid) in aqueous solution

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The field of thermo- and pH-sensitive copolymers, with applications in controlled drug delivery, is enriched with the copolymer based on N-vinylcaprolactam and maleic acid (VCL–MAc) that is synthesized and characterized in this paper. Cloud point measurements and dynamic light scattering are used to characterize the phase transition of VCL–MAc copolymers with variable composition in aqueous solution. The lower critical solution temperature (LCST) increases when the maleic acid content in the copolymer rises. Also, the LCST strongly depends on the polymer concentrations and the pH of the aqueous solution. The influence of the pH, and as a result of the polyelectrolyte dissociation, on the macromolecular chains conformation is studied by viscometric measurements. An interplay between Coulombic, hydrophobic and hydrogen bonding interactions determines the conformation of the macromolecules in solution and also the phase separation of VCL–MAc copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CP:

Cloud point

Dh:

Hydrodynamic diameter

DLS:

Dynamic light scattering

KPS:

Potassium persulfate

LCST:

Lower critical solution temperature

MAc:

Maleic acid

OD450 :

Optical density at 450 nm

VCL–MAc:

Vinylcaprolactam–maleic acid copolymer

References

  1. Bawa P, Pillay V, Choonara YE, du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4:022001–022015. doi:10.1088/1748-6041/4/2/02200

    Article  Google Scholar 

  2. Buengera D, Topuza F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719. doi:10.1016/j.progpolymsci.2012.09.001

    Article  Google Scholar 

  3. Lau ACW, Wu C (1999) Thermally sensitive and biocompatible poly(N-vinylcaprolactam): synthesis and characterization of high molar mass linear chains. Macromolecules 32:581–584. doi:10.1021/ma980850n

    Article  CAS  Google Scholar 

  4. Laukkanen A, Valtola L, Winnik FM, Tenhu H (2004) Formation of colloidally stable phase separated poly(N-vinylcaprolactam) in water: a study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules 37:2268–2274. doi:10.1021/ma035124l

    Article  CAS  Google Scholar 

  5. Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules 35:217–222. doi:10.1021/ma011034

    Article  CAS  Google Scholar 

  6. Dubovik AS, Machaeva EE, Grinberg VY, Khokhlov AR (2005) Energetics of cooperative transitions of N-vinylcaprolactam polymers in aqueous solutions. Macromol Chem Phys 206:915–928. doi:10.1002/macp.200400554

    Article  CAS  Google Scholar 

  7. Li W, Wu P (2014) On the thermodinamic phase behavior of poly(N-vinylcaprolactam) solution in the presence of different ionic liquids. Polym Chem 5:761–770. doi:10.1039/C3PY01104F

    Article  CAS  Google Scholar 

  8. Shtanko NI, Lequieu W, Goethlas EJ, du Prez FE (2003) pH- and thermo-responsive properties of poly(N-vinylcaprolactam-co-acrylic acid) copolymers. Polym Int 52:1605–1610. doi:10.1002/pi.1347

    Article  CAS  Google Scholar 

  9. Makhaeva EE, Tenhu H, Khokhlov AR (2002) Behavior of poly(N-vinylcaprolactam-co-methacrylic acid) macromolecules in aqueous solution: interplay between coulombic and hydrophobic interaction. Macromolecules 35:1870–1876. doi:10.1021/ma0105789

    Article  CAS  Google Scholar 

  10. Okhapkin IM, Nasimova IR, Makhaeva EE, Khokhlov AR (2003) Effect of complexation of monomer units on pH- and temperature-sensitive properties of poly(N-vinylcaprolactam-co-methacrylic acid). Macromolecules 36:8130–8138. doi:10.1021/ma035114k

    Article  CAS  Google Scholar 

  11. Cao Y, He W (2011) Functionalized biocompatible poly(N-vinyl-2-caprolactam) with pH-dependent lower critical solution temperature behaviors. Macromol Chem Phys 212:2503–2510. doi:10.1002/macp.201100414

    Article  CAS  Google Scholar 

  12. Tang S, Cao Y, Goddard SC, He W (2014) Synthesis of 3-(tert-butoxycarbonylmethyl)-N-vinyl-2-caprolactam and homologous copolymerization toward biocompatible carboxylated poly(N-vinyl-2-caprolactam) responsive to pH and temperature. J Polym Sci Part A: Polym Chem 52:112–120. doi:10.1002/pola.26977

    Article  CAS  Google Scholar 

  13. Maeda Y, Yamamoto H, Ikeda I (2001) Effects of ionization of incorporated imidazole groups on the phase transitions of poly(N-isopropylacrylamide), poly(N, N-diethylacrylamide), and poly(N-vinylcaprolactam) in water. Langmuir 17:6855–6859. doi:10.1021/la0106438

    Article  CAS  Google Scholar 

  14. Shatalov GV, Verezhnikov VN, Plaksitskaya TV, Kuznetzov VA, Poyarkova TN, Yan’shina AV (2006) Synthesis of N, N-dimethylaminoethyl methacrylate copolymers with N-vinyl caprolactam and their complexing and flocculating behavior. Polym Sci Ser A 48:563–568. doi:10.1134/S0965545X06060022

    Article  Google Scholar 

  15. Liang X, Kozlovskaya V, Chen Y, Zavgorodna O, Kharlampieva E (2012) Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules. Chem Mater 24:3707–3719. doi:10.1021/cm301657q

    Article  CAS  Google Scholar 

  16. Pich A, Tessier A, Boyo V, Lu Y, Adler H-JP (2006) Synthesis and characterization of poly(vinylcaprolactam)-based microgels exhibiting temperature and pH-sensitive properties. Macromolecules 39:7701–7707. doi:10.1021/ma060985q

    Article  CAS  Google Scholar 

  17. Schachschal S, Balaceanu A, Melian C, Demco DE, Eckert T, Richtering W, Pich A (2010) Polyampholyte microgels with anionic core and cationic shell. Macromolecules 43:4331–7339. doi:10.1021/ma100184h

    Article  CAS  Google Scholar 

  18. Imaz A, Forcada J (2011) Synthesis strategies to incorporate acrylic acid into N-vinylcaprolactam-based microgels. J Polym Sci Part A: Polym Chem 49:3218–3227. doi:10.102/pola.24758

    Article  CAS  Google Scholar 

  19. Rao KM, Mallikarjuna B, Rao KSVK, Siraj S, Rao KC, Subha MCS (2013) Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf, B 102:891–897. doi:10.1016/j.colsurfb.2012.09.009

    Article  Google Scholar 

  20. Ilavský M, Mamytbekov G, Bouchal K, Hanyková L (1999) Phase transition in swollen gels 27. Effect of negative charge concentration on swelling and mechanical behaviour of poly(N-vinylcaprolactam) gels. Polym Bull 43:109–116

    Article  Google Scholar 

  21. Sauvage E, Amos DA, Antalek B, Schroeder KM, Tan JS, Plucktaveesah N (2004) Amphiphilic maleic acid-containing alternating copolymers—1. Dissociation behavior and compositions. J Polym Sci Pol Phys 42:3571–3583. doi:10.1002/polb.20202

    Article  CAS  Google Scholar 

  22. Popescu I, Suflet DM, Pelin IM, Popa MI (2012) Influence of the comonomer on the dissociation of some alternating maleic acid copolymers. J Macromol Sci Part B-Phys 51:1–15. doi:10.1080/00222348.2011.609784

    Article  Google Scholar 

  23. Kesim H, Rzaev ZMO, Dinçer S, Pisşkin E (2003) Functional bioengineering copolymers. II. Synthesis and characterization of amphiphilic poly(N-isopropyl acrylamide-co-maleic anhydride) and its macrobranched derivatives. Polymer 44:2897–2909. doi:10.1016/S0032-3861(03)00177-0

    Article  CAS  Google Scholar 

  24. Weiss-Malik RA, Solis FJ, Vernon BL (2004) Independent control of lower critical solution temperature and swelling behavior with pH for poly(N-isopropylacrylamide-co-maleic acid. J Appl Polym Sci 94:2110–2116. doi:10.1002/app.21000

    Article  CAS  Google Scholar 

  25. Popescu I, Suflet DM, Pelin IM, Chitanu GC (2011) Biomedical applications of maleic anhydride copolymers. Rev Roum Chim 56:173–188

    CAS  Google Scholar 

  26. Azori M (1988) Polymeric prodrugs systems based on poly(N-vinylpyrrolidone-alt-maleic anhydride). In: Migliaresi C, Nicolais L, Guisti P, Chiellini E (eds) Poymers in medicine III: proceedings of the Third International Conference on Polymers in Medicine, Porto Cervo, Italy, June 9–13, 1987. Elsevier Science Publishers B. V., Amsterdam, pp 189–199

    Google Scholar 

  27. Can HK, Doğan AL, Rzaev ZMO, Uner AH, Güner A (2006) Synthesis, characterization, and antitumor activity of poly(maleic anhydride-co-vinyl acetate-co-acrylic acid). J Appl Polym Sci 100:3425–3432. doi:10.1002/app.21834

    Article  CAS  Google Scholar 

  28. Karakus G, Zengin HB, Polat ZA, Yenidunya AF, Aydin S (2013) Cytotoxicity of three maleic anhydride copolymers and common solvents used for polymer solvation. Polym Bull 70:1591–1612. doi:10.1007/s00289-012-0860-5

    Article  CAS  Google Scholar 

  29. Boghina C (1977) Copolymerization of N-vinyl-ε-caprolactam with maleic anhydride. Makromol Chem 178:1039–1047

    Article  CAS  Google Scholar 

  30. Güven G, Rzaev ZMO (2008) Complex-radical copolymerization of N-vinyl pyrrolidone with isostructural analogs of maleic anhydride. Polym Bull 60:741–752. doi:10.1007/s00289-008-0909-7

    Article  Google Scholar 

  31. Liu T, Chen J, Sugihara S, Maeda Y (2012) Study on hydration of poly(N-vinylcaprolactam) microgels by near-IR and mid-IR spectroscopy. Colloid Polym Sci 290:763–767. doi:10.1007/s00396-012-2621-2

    Article  CAS  Google Scholar 

  32. Sun S, Wu P (2011) Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolactam) in water. J Phys Chem B 115:11609–11618. doi:10.1021/jp2071056

    Article  CAS  Google Scholar 

  33. Mȕller M, Kessler B, Richter S (2005) Preparatio of monomodal polyelectrolyte complex nanoparticles of PDADMAC/poly(maleic acid-alt-α-methylstyrene) by consecutive centrifugation. Langmuir 21:7044–7051. doi:10.1021/la050716d

    Article  Google Scholar 

  34. Tripto E, Quinn JF, Caruso F (2005) Assembly of multilayer films from polyelectrolytes containing weak and strong acid moieties. Langmuir 21:8785–8792. doi:10.1021/la051197h

    Article  Google Scholar 

  35. Spěváček J, Dybal J, Starovoytova L, Zhigunov A, Sedláková Z (2012) Temperature-induced phase separation and hydration in poly(N-vinylcaprolactam) aqueous solutions: a study by NMR and IR spectroscopy, SAXS, and quantum-chemical calculations. Soft Matter 8:6110–6119

    Article  Google Scholar 

  36. Lozinsky VI, Simenel IA, Kulakova VK et al (2003) Synthesys and studies of N-vinylcaprolactam/N-vinylimidazole copolymers that exhibit the “proteinlike” behavior in aqueous media. Macromolecules 36:7308–7323. doi:10.1021/ma034456n

    Article  CAS  Google Scholar 

  37. Balaceanu A, Demco DE, Moler M, Pich A (2011) Microgel heterogeneous morphology reflected in temperature-induced volume transition and 1H high-resolution transverse relaxation NMR. The case of poly(N-vinylcaprolactam)microgel. Macromolecules 44:2161–2169. doi:10.1021/ma200103y

    Article  CAS  Google Scholar 

  38. Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals E, du Prez F (2000) Phase behavior of poly(N-vinyl caprolactam) in water. Polymer 41:8597–8602. doi:10.1016/S0032-3861(00)00255-X

    Article  CAS  Google Scholar 

  39. Delben F, Paoletti S, Prasso RD, Benegas JC (2006) Potentiometric titration of maleic acid copolymers in dilute aqueous solution: experimental results and theoretical interpretation. Macromol Chem Phys 207:2299–2310. doi:10.1002/macp.200600479

    Article  CAS  Google Scholar 

  40. Reinhardt S, Steinert V, Werner K (1996) Investigations on the dissociation behavior of hydrolyzed alternating copolymers of maleic anhydride and propene-II. Viscometric behavior. Eur Polym J 32:939–942. doi:10.1016/0014-3057(96)00029-8

    Article  CAS  Google Scholar 

  41. Kawaguchi S, Kitano T, Ito K (1991) Infrared and ultraviolet spectroscopic studies on intramolecular hydrogen bonding in an alternating copolymer of isobutylene and maleic acid. Macromolecules 24:3036–6030. doi:10.1021/ma00022a020

    Google Scholar 

  42. Hirose Y, Onodera M, Kawaguchi S, Ito K (1995) Monte Carlo simulation studies of conformational properties of polyelectrolytes with maleic acid units. Polym J 27:519–528

    Article  CAS  Google Scholar 

  43. Yin X, Hoffman AS, Stayton P (2006) Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7:1381–1385. doi:10.1021/bm0507812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian Ministry of Education, CNCS–UEFISCDI, project number PN-II-RU-PD-2012-3–0059. A.I. Prisacaru acknowledges the financial support from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 264115—STREAM. Paper dedicated to the 65th anniversary of “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, I., Prisacaru, A.I., Suflet, D.M. et al. Thermo- and pH-sensitivity of poly(N-vinylcaprolactam-co-maleic acid) in aqueous solution. Polym. Bull. 71, 2863–2880 (2014). https://doi.org/10.1007/s00289-014-1227-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1227-x

Keywords

Navigation