Skip to main content
Log in

Trisilanolisobutyl POSS/polyurethane hybrid composites: preparation, WAXS and thermal properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Trisilanolisobutyl polyhedral oligomeric silsesquioxane (TSI-POSS) with three hydroxyl functional groups pendent to an open cage, was incorporated in concentrations of 7, 13 and 22 wt% into 4,4′-methylenebis(phenyl isocyanate) and glycerol propoxylate to prepare TSI-POSSPU hybrid composites as a heavy linking node in polymer backbone, respectively. These composites were characterized by FTIR, wide-angle X-ray scattering (WAXS), dynamic mechanical analysis and thermogravimetry techniques. In WAXS profiles, above 22 wt% TSI-POSS concentration, the morphology of composite is significantly altered and distinct crystallite clusters are formed, which increase the volume of hard segment in polyurethane (PU) hybrid composite. As TSI-POSS concentration rises, the glass transition temperature (T g) of composites is increased while the decomposition temperature is slightly decreased due to the oxysensitive isobutyl groups in structure. Meanwhile, the activation energy of hybrid composites is nearly unchanged indicating that the formation of crystallite cluster, which restricts motion of surrounding chains, is the predominant effect in T g increasing. It can be concluded that the morphology and the thermal property of polyurethane can be tailored by TSI-POSS incorporation, whereas functional group in TSI-POSS structure is the decisive factor for the thermostability of designed composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. POSS® User’s Guide version 2.06. Hybrid Plastics, Inc. http://www.hybridplastics.com/docs/user-v2.06.pdf. Accessed 15 April 2011

  2. Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc 68:356–358

    Article  CAS  Google Scholar 

  3. Bonart R (1968) X-ray investigations concerning the physical structure of cross-linking in segmented urethane elastomers. J Macromol Sci Phys B 2(1):115–138

    Article  CAS  Google Scholar 

  4. Koberstein JT, Leung LM (1992) Compression-molded polyurethane block copolymers. 2. Evaluation of microphase compositions. Macromolecules 25:6205–6213

    Article  CAS  Google Scholar 

  5. Koberstein JT, Galambos AF, Leung LM (1992) Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties. Macromolecules 25:6195–6204

    Article  CAS  Google Scholar 

  6. Lewicki James P, Hrley Stemphen J et al (2013) The influence of polyhedral oligomeric silsequioxanes on domain microstructure in polyurethane elastomers. Silicon 5:205–212

    Article  CAS  Google Scholar 

  7. Fu Bruce X, Hsiao Benjamin S, Schwab Joseph et al (2000) Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polym Int 49:437–440

    Article  CAS  Google Scholar 

  8. Oaten M, Choudhury NR (2005) Silsesquioxane-urethane hybrid for thin film applications. Macromolecules 38(15):6392–6401

    Article  CAS  Google Scholar 

  9. Pistor V, de Cnto D et al (2012) Microstructure and crystallization kinetics of polyurethane thermoplastics containing trisilanol isobutyl POSS. J Nanomater doi:10.1155/2012/28031

  10. Liu YR, Huang YD, Liu L (2006) Effects of trisilanolisobutyl-POSS on thermal stability of methylsilicon resin. Polym Degrad Stab 91(11):2731–2738

    Article  CAS  Google Scholar 

  11. Montero B, Bellas R, Ramírez C, Rico M, Bouza R (2014) Flame retardancy and thermal stability of organic–inorganic hybrid resins based on polyhedral oligomeric silsesquioxanes and montmorillonite clay. Compos Part B Eng E 63:67–76

    Article  CAS  Google Scholar 

  12. Song Lei, He Qingliang, Yuan Hu, Chen Hao, Liu Lei (2008) Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polym Degrad Stab 93(3):627–639

    Article  CAS  Google Scholar 

  13. Weidner Steffen M, Trimpin Sarah (2008) Mass spectrometry of synthetic polymers. Anal Chem 80(12):4349–4361

    Article  CAS  Google Scholar 

  14. Kun Wu, Song Lei, Yuan Hu, Hongdian Lu et al (2009) Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog Org Coat 65(4):490–497

    Article  Google Scholar 

  15. Aman Ullah, Jenny Alongi, Saverio Russo (2011) Recent findings in (Ti)POSS-based polymer systems. Polym Bull 67:1169–1183

    Article  Google Scholar 

  16. Madbouly Samy A, Otaigbe Joshua U (2009) Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog Polm Sci 24:1283–1332

    Article  Google Scholar 

  17. Liang Kaiwen, Toghiani Hossein, Pittman Charles U Jr (2011) Synthesis, morphology and viscoelastic properties of epoxy/polyhedral oligomeric silsesquioxane (POSS) and epoxy/cyanate ester/POSS nanocomposites. J Inorg Organomet Polym 21:128–130

    Article  CAS  Google Scholar 

  18. Yılmaz İnan Tülay, Ekrem Ekinci et al (2002) Preparation of novel UV-curable methacrylated urethane resins from a modified epoxy resin and isocyanatoethylmethacrylate (IEM). Polym Bull 47:437–444

    Article  Google Scholar 

  19. Zheng Lei, Waddon Alan J, Bryan Coughlin E (2002) X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromol 35:2375–2379

    Article  CAS  Google Scholar 

  20. Efrat T, Dodiuk H, Mccarthy S (2006) Nanotailoring of polyurethane adhesive by polyhedral oligomeric silsesquioxane (POSS). J Adhesion Sci Technol 20(12):1413–1415

    Article  CAS  Google Scholar 

  21. Fu BX, Hsiao BS, Schwab J (2001) Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. Polym 42:599–602

    Article  CAS  Google Scholar 

  22. Fedelich N et al (2013) Thermal analysis of Polymers. Mettler-Toledo AG. http://us.mt.com/dam/LabDiv/Campaigns/gp/gtap/thermal_analysis_of_polymers_en.pdf. Accessed 25 June 2014

  23. Karbhari VM, Wang Q (2004) Multi-frequency dynamic mechanical thermal analysis of moisture uptake in E-glass/vinylester composites. Compos B Eng 35(4):299–304

    Article  Google Scholar 

  24. Bai Yu, Jin Li (2008) Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship. J Phys D Appl Phys 41(5):152008. doi:10.1088/0022-3727/41/15/152008

    Article  Google Scholar 

  25. Karbhari VM, Wang Q (2004) Multi-frequency dynamic thermal analysis of moisture uptake in E-glass/vinylester composites. Compos B 35(4):299–304

    Article  Google Scholar 

  26. Li G, Lee-Sullivan P, Thring RW (2000) Determination of activation energy for glass transition of an epoxy adhesive using dynamic mechanical analysis. J Therm Anal Calorim 60(2):377–390

    Article  CAS  Google Scholar 

  27. Thomas S, Valsaraj SV, Meera AP, Zsikov GE (2010) Recent advances in polymer nanocomposites: synthesis and characterization. Vsp Books, USA, pp 151–160

    Book  Google Scholar 

  28. Zou J, Chen X, Huang FR (2011) Poly(l-lactide) nanocomposites containing octaglycidylether polyhedral oligomeric silsesquioxane: preparation, structure and properties. Exp Polym Lett 5(8):662–673

    Article  CAS  Google Scholar 

  29. Rashid Erfan Suryani Abd, Ariffin Kamarshah, Akil Hazizan Md (2009) Preparation and properties of POSS/epoxy composites for electronic packaging applications. Mater Des 30:1–8

    Article  Google Scholar 

  30. Waddon AJ, Zheng L, Bryan Coughlin E (2002) Nanostructured polyehtylene-POSS copolymers: control of crystallization and aggregation. Nano Lett 2(10):1149–1155

    Article  CAS  Google Scholar 

  31. Xavier Perrin F, Viet Nguyen TB, Margaillan Andre (2011) Linear and branched alkyl substituted octakis(dimethylsiloxy)octasilsesquioxanes: WAXS and thermal properties. Eur Polym J 47:1370–1382

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Sichuan Education Office Foundation (Project No. 11ZA106) in China and Key Laboratory of  Special Waste Water Treatment in Sichuan Province Higher Education System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Shanks, R., Kong, I. et al. Trisilanolisobutyl POSS/polyurethane hybrid composites: preparation, WAXS and thermal properties. Polym. Bull. 71, 2453–2464 (2014). https://doi.org/10.1007/s00289-014-1201-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1201-7

Keywords

Navigation