Skip to main content
Log in

Radiation-induced modification of dielectric relaxation spectra of polyolefins: polyethylenes vs. polypropylene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The molecular relaxation behaviour of polyolefins exposed to high-energy radiation has been investigated by dielectric loss (tan δ) analysis. Therefore, low-density polyethylene, high-density polyethylene (HDPE), and isotactic polypropylene (iPP) were gamma-irradiated in air to various absorbed doses (up to 700 kGy). All relaxation zones (α, β, γ, and δ in the order of decreasing temperature), between 25 K and melting temperature, were studied. The radiation-induced changes observed in the dielectric relaxation spectra were related to the modifications in the structural and morphological parameters attributed to exposure of the polyolefins to radiation. Wide-angle X-ray diffraction, infrared spectroscopy, and gel measurements were used to determine the radiation-induced changes in the crystalline structure, oxidative degradation, and the degree of network formation, respectively. The present study reveals high dielectric and/or relaxation sensitivity of polyolefins to gamma radiation. Disappearance of some relaxations (such as β relaxation in HDPE and low temperature γ and δ relaxations in iPP) is clearly observed with irradiation. For the other relaxations, besides the large changes in the relaxation intensity, radiation also induces smaller/larger changes in the distribution of relaxation times, peak position, and activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dadbin S, Frounchi M, Saeid MH, Gangi F (2002) Molecular structure and physical properties of e-beam crosslinked low-density polyethylene for wire and cable insulation applications. J Appl Polym Sci 86(8):1959–1969

    Article  CAS  Google Scholar 

  2. Montanari GC, Fabiani D, Palmieri F, Kaempfer D, Thomann R, Mulhaupt R (2004) Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. IEEE Trans Dielect Electr Insul 11(5):754–762

    Article  CAS  Google Scholar 

  3. Hedvig P (1977) Dielectric spectroscopy of polymers. Academia Kiado, Budapest

    Google Scholar 

  4. Fouracre RA, MacGregor SJ, Judd M, Banford HM (1999) Condition monitoring of irradiated polymeric cables. Radiat Phys Chem 54(2):209–211

    CAS  Google Scholar 

  5. Ramanujam M, Wachtendorf V, Purohit PJ, Mix R, Schönhals A, Friedrich JF (2012) A detailed dielectric relaxation spectroscopy study of artificial UV weathered low density polyethylene. Thermochim Acta 530:73–78

    Article  CAS  Google Scholar 

  6. Boyd RH (1985) Relaxation processes in crystalline polymers: experimental behavior—a review. Polymer 26(3):323–347

    Article  CAS  Google Scholar 

  7. Suljovrujic E (2009) Gel production, oxidative degradation and dielectric properties of isotactic polypropylene irradiated under various atmospheres. Polym Degrad Stab 94(4):521–526

    Article  CAS  Google Scholar 

  8. Ribes-Greus A, Diaz-Calleja R (1989) Dielectric relaxations of high and low density irradiated polyethylene. J Appl Polym Sci 38(6):1127–1143

    Article  CAS  Google Scholar 

  9. Chodak I (1995) Properties of crosslinked polyolefin-based materials. Prog Polym Sci 20(6):1165–1199

    Article  CAS  Google Scholar 

  10. Singh A, Silverman J (eds) (1991) Radiation processing of polymers. Hanser Publishers, Munich

    Google Scholar 

  11. Dole M (1972) The radiation chemistry of macromolecules, vol 1. Academic Press, New York, London

    Google Scholar 

  12. Dole M (1973) The radiation chemistry of macromolecules, vol 2. Academic Press, New York

    Google Scholar 

  13. Suljovrujic E (2009) The influence of molecular orientation on the crosslinking/oxidative behaviour of iPP exposed to gamma radiation. Eur Polym J 45(7):2068–2078

    Article  CAS  Google Scholar 

  14. Suljovrujic E, Trifunovic S, Milicevic D (2010) The influence of gamma radiation on the dielectric relaxation behaviour of isotactic polypropylene. The α relaxation. Polym Degrad Stab 95(2):164–171

    Article  CAS  Google Scholar 

  15. Alariqi SAS, Kumar AP, Rao BSM, Singh RP (2009) Effect of γ-dose rate on crystallinity and morphological changes of γ-sterilized biomedical polypropylene. Polym Degrad Stab 94(2):272–277

    Article  CAS  Google Scholar 

  16. Suljovrujic E (2005) Some aspects of structural electrophysics of irradiated polyethylenes. Polymer 46(17):6353–6359

    Google Scholar 

  17. Pereña JM, Fatou JG, Guzmán J (1980) Dynamic mechanical behaviour of chlorinated polyethylene. Macromol Chem Phys 181(6):1349–1356

    Google Scholar 

  18. Ashcraft CR, Boyd RH (1976) A dielectric study of molecular relaxation in oxidized and chlorinated polyethylenes. J Polym Sci Polym Phys 14(12):2153–2193

    CAS  Google Scholar 

  19. Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation - a review. Polymer 26(8):1123–1133

    Article  CAS  Google Scholar 

  20. Quijada-Garrido I, Barrales-Rienda JM, Pereña JM, Frutos G (1997) Dynamic mechanical and dielectric behavior of erucamide (13-Cis-Docosenamide), isotactic poly(propylene), and their blends. J Polym Sci Polym Phys 35(10):1473–1482

    Article  CAS  Google Scholar 

  21. Graff MS, Boyd RH (1994) A dielectric study of molecular relaxation in linear polyethylene. Polymer 35(9):1797–1801

    Article  CAS  Google Scholar 

  22. Pluta M, Kryszewski M (1987) Studies of alpha-relaxation process in spherulitic and non-spherulitic samples of isotactic polypropylene with different molecular ordering. Acta Polym 38(1):42–52

    Article  CAS  Google Scholar 

  23. Popli R, Glotin M, Mandelkern L, Benson RS (1984) Dynamic mechanical studies of α and β relaxations of polyethylenes. J Polym Sci Polym Phys 22(3):407–448

    CAS  Google Scholar 

  24. Arranz-Andrés J, Peña B, Benavente R, Pérez E, Cerrada ML (2007) Influence of isotacticity and molecular weight on the properties of metallocenic isotactic polypropylene. Eur Polym J 43(6):2357–2370

    Article  Google Scholar 

  25. Jourdan C, Cavaille JY, Perez J (1989) Mechanical relaxations in polypropylene. A new experimental and theoretical approach. J Polym Sci Polym Phys 27(11):2361–2384

    Article  CAS  Google Scholar 

  26. Puertolas JA, Martínez-Morlanes MJ, Mariscal MD, Medel FJ (2011) Thermal and dynamic mechanical properties of vitamin e infused and blended ultra-high molecular weight polyethylenes. J Appl Polym Sci 120(4):2282–2291

    Article  CAS  Google Scholar 

  27. Kessairi K, Napolitano S, Capaccioli S, Rolla P, Wübbenhorst M (2007) Molecular dynamics of atactic poly(propylene) investigated by broadband dielectric spectroscopy. Macromolecules 40(6):1786–1788

    Article  CAS  Google Scholar 

  28. McCrum NG (1984) The kinetics of the α and β relaxations in isotactic polypropylene. Polymer 25(3):299–308

    Article  CAS  Google Scholar 

  29. Qin Q, McKenna GB (2006) Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids. J Noncryst Solids 352(28–29):2977–2985

    Article  CAS  Google Scholar 

  30. Razavi-Nouri M (2005) Thermal and dynamic mechanical properties of a polypropylene random copolymer. Iran Polym J 14(5):485–493

    CAS  Google Scholar 

  31. Roy SK, Kyu T, Manley John RS (1988) Physical and dynamic mechanical properties of ultradrawn polypropylene films. Macromolecules 21(2):499–504

    Article  CAS  Google Scholar 

  32. Sakai A, Tanaka K, Fujii Y, Nagamura T, Kajiyama T (2005) Structure and thermal molecular motion at surface of semi-crystalline isotactic polypropylene films. Polymer 46:429–437

    Article  CAS  Google Scholar 

  33. Suljovrujic E (2012) Complete relaxation map of polypropylene: radiation-induced modification as dielectric probe. Polym Bull 68(7):2033–2047

    Article  CAS  Google Scholar 

  34. Yamamoto K, Kato K, Sugino Y, Hara S, Miwa Y, Sakaguchi M, Shimada S (2005) ESR study on segmental motion of polyethylene in amorphous region, dependent on crystallinity, molecular weight, and labeled site. Macromolecules 38(11):4737–4743

    Article  CAS  Google Scholar 

  35. Khanna YP, Turi EA, Taylor TJ, Vickroy VV, Abbott RF (1985) Dynamic mechanical relaxations in polyethylene. Macromolecules 18(6):1302–1309

    Article  CAS  Google Scholar 

  36. Dechter JJ, Axelson DE, Dekmezian A, Glotin M, Mandelkern L (1982) An analysis of the β transition of linear and branched polyethylenes by carbon-13 NMR. J Polym Sci Polym Phys 20(4):641–650

    CAS  Google Scholar 

  37. Boiko YM, Kovriga VV (1993) Relaxation behavior of polyethylene oriented by various techniques. Int J Polym Mater 22(1–4):209–217

    Article  CAS  Google Scholar 

  38. Matsuo M, Bin Y, Xu C, Ma L, Nakaoki T, Suzuki T (2003) Relaxation mechanism in several kinds of polyethylene estimated by dynamic mechanical measurements, positron annihilation, X-ray and 13C solid-state NMR. Polymer 44(15):4325–4340

    Article  CAS  Google Scholar 

  39. Matthews RG, Unwin AP, Ward IM, Capaccio G (1999) A comparison of the dynamic mechanical relaxation behavior of linear low- and high-density polyethylenes. J Macromol Sci B 1–2:123–143

    Article  Google Scholar 

  40. Pegoretti A, Ashkar M, Migliaresi C, Marom G (2000) Relaxation processes in polyethylene fibre-reinforced polyethylene composites. Compos Sci Technol 60(8):1181–1189

    Article  CAS  Google Scholar 

  41. Frubing P, Blischke D, Gerhard-Multhaupt R, Khalil Salah M (2001) Complete relaxation map of polyethylene: filler-induced chemical modifications as dielectric probes. J Phys D Appl Phys 34(20):3051–3057

    Article  CAS  Google Scholar 

  42. Plazek D, Ngai KL (1991) Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules 24(5):1222–1224

    Article  CAS  Google Scholar 

  43. Hoffman JD, Williams G, Passaglia E (1966) Analysis of the α, β and γ relaxations in polychlorotrifluoroethylene and polyethylene: dielectric and mechanical properties. J Polym Sci Polym Symp 11:173–235

    Google Scholar 

  44. Fischer EW, Peterlin A (1964) Kernresonanzmessungen zur untersuchung der kettenbeweglichkeit in polyäthylen-einkristallen. Macromol Chem Phys 74(1):1–28

    CAS  Google Scholar 

  45. Starkweather HW, Avakian P, Matheson RR, Fontanella JJ, Wintersgill MC (1992) Ultralow temperature dielectric relaxations in polyolefins. Macromolecules 25(25):6871–6875

    Article  CAS  Google Scholar 

  46. Sinnott KM (1962) Dynamic shear behavior of high polymers at low frequencies. Polym Eng Sci 2(1):65–73

    Article  Google Scholar 

  47. Mark EJ (1996) Physical properties of polymers handbook. American Institute of Physics, Woodbury, New York

    Google Scholar 

  48. Kostoski D, Dojcilovic J, Novakovic L, Suljovrujic E (2006) Effects of charge trapping in gamma irradiated and accelerated aged low-density polyethylene. Polym Degrad Stab 91(9):2229–2232

    Article  CAS  Google Scholar 

  49. Ratner S, Pegoretti A, Migliaresi C, Weinberg A, Marom G (2005) Relaxation processes and fatigue behavior of crosslinked UHMWPE fiber compacts. Compos Sci Technol 65(1):87–94

    Article  CAS  Google Scholar 

  50. Perepechko II (1977) Svoistva polimerov pri nizkih temperaturah. Khimiya, Moskva

    Google Scholar 

  51. Hoyos M, Tiemblo P, Gómez-Elvira JM (2007) The role of microstructure, molar mass and morphology on local relaxations in isotactic polypropylene. The α relaxation. Polymer 48(1):183–194

    Article  CAS  Google Scholar 

  52. Perez CJ, Failla MD, Carella JM (2012) Advantageous use of SSA technique to observe effects of thickness, antioxidant and oxygen in gamma irradiated low density polyethylene. Thermochim Acta 538:67–74

    Article  CAS  Google Scholar 

  53. Banford HM, Fouracre RA, Faucitano A, Buttafava A, Martinotti F (1996) The influence of chemical structure on the dielectric behavior of polypropylene. IEEE Trans Dielect Electr Insul 3(4):594–598

    Article  CAS  Google Scholar 

  54. Lacoste J, Vaillant D, Chmela S (1996) Gamma-, photo- and thermally-initiated oxidation of polyolefines used in packaging. J Polym Eng 15(1–2):139–152

    Google Scholar 

  55. Shinde A, Salovey R (1985) Irradiation of ultrahigh-molecular-weight polyethylene. J Polym Sci Polym Phys 23(8):1681–1689

    CAS  Google Scholar 

  56. Gavrila DE, Gosse B (1994) Post-irradiation degradation of polypropylene. J Radioanal Nucl Chem 185(2):311–317

    Article  CAS  Google Scholar 

  57. Veselovskii RA, Leshchenko SS, Karpov VL (1968) Some problems of the radiation chemistry of polypropylene. Polym Sci (USSR) 10:881–894

    Article  Google Scholar 

  58. Puig CC, Albano C, Laredo E, Quero E, Karam A (2010) Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using γ-rays. Nucl Instrum Methods B 268(9):1466–1473

    Article  CAS  Google Scholar 

  59. Danch A, Osoba W (2003) Structural relaxation of the constrained amorphous phase in the glass transition zone. J Therm Anal Calorim 72(2):641–650

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education, Science and Technological development of the Republic of Serbia (Grant No. 172026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edin Suljovrujic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milicevic, D., Micic, M. & Suljovrujic, E. Radiation-induced modification of dielectric relaxation spectra of polyolefins: polyethylenes vs. polypropylene. Polym. Bull. 71, 2317–2334 (2014). https://doi.org/10.1007/s00289-014-1190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1190-6

Keywords

Navigation