Skip to main content
Log in

Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly(3(R)-hydroxybutyrate) PHB/clay nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

PHB is a thermoplastic biopolymer produced by fermentation of renewable resources. Secondary crystallization during storage leading to an increased degree of crystallinity is a principal reason of PHB brittleness. In addition, pure PHB has no residues of catalysts, meaning low nucleation density and slow crystallization rates, leading to the formation of large spherulites with cracks and brittleness. To overcome the brittleness of PHB, polymer composites based on PHB, plasticizers, and nano-clays A and B were prepared by solvent casting. The addition of plasticizer decreases T g from 5 to −13 °C in all composites. Furthermore, the addition of nano-clays acts as a nucleating agent to PHB. The effect of nano-clays A and B on spherulites morphology, thermal behavior, and crystal structure of PHB composites were tested by several techniques. Differential scanning calorimetry analysis shows that the addition of nano-clay A does not change the crystallization temperature and the crystallization half-time (t 1/2) of the PHB matrix but that nano-clay B accelerates the crystallization process. Thermogravimetric analysis revealed an increase in thermal stability of composites containing nano-clay B. Polarized optical microscopy showed that nano-clays serve as nucleating agents in PHB matrix. Therefore, the spherulites become smaller and the nuclei density increases at the selected crystallization temperature, compared to pure PHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Steinbuchel A (2003) Biopolymers: general aspects and special applications, vol 10. Wiley, Weinheim, pp 516–530

    Google Scholar 

  2. El-Hadi A, Schnabel R, Straube E, Müller G, Riemschneider M (2002) Effect of melts processing on crystallization behavior and rheology of poly (3-hydroxybutyrate) PHB and its blends. Macromol Mater Eng 287:363–372

    Article  CAS  Google Scholar 

  3. El-Hadi A, Schnabel R, Straube E, Muller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674

    Article  CAS  Google Scholar 

  4. Hobbs JK, McMaster TJ, Miles MJ, Barham PJ (1996) Cracking in spherulites of poly(hydroxybutyrate). Polymer 37:32413246

    Article  Google Scholar 

  5. Kulkarni SO, Jog JP, Nilegaonkar SS, Sarnaik SS, Kshirsagar PR (2011) Characterisation of copolymer, poly(hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) produced by Halomonas campisalis (MCM B-1027), its biodegrability and potential application. Biores Technol 102:6625–6628

    Article  Google Scholar 

  6. Zagar E, Krzan A, Adamus G, Kowalczuk M (2006) Sequence distribution in microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polyesters determined by NMR and MS. Biomacromolecules 7:2210–2216

    Article  CAS  Google Scholar 

  7. Qu XH, Wu Q, Liang J, Qu X, Wang SG, Chen GQ (2005) Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26:6991–7001

    Article  CAS  Google Scholar 

  8. Asrar J, Valentin HE, Berger PA, Tran M, Padgette SR, Garbow JR (2002) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers. Biomacromolecules 3:1006–1012

    Article  CAS  Google Scholar 

  9. Vogel R, Taendler B, Voigt D, Jehnichen D, Haeußler L, Peitzsch L, Bruenig H (2007) Melt spinning of bacterial aliphatic polyester using reactive extrusion for improvement of crystallization. Macromol Biosci 7:820–828

    Article  CAS  Google Scholar 

  10. Hermida EB, Mega VI, Yashchuk O, Fernandez V, Eisenberg P, Miyazaki SS (2008) Gamma irradiation effects on mechanical and thermal properties and biodegradation of poly (3-hydroxybutyrate) based films. Macromol Symposia 263:102–113

    Article  CAS  Google Scholar 

  11. Carswell-Pomerantz T, Hill DJT, O’Donnell JH, Pomery P (1995) J Radiat Phys Chem 45:737–744

    Article  CAS  Google Scholar 

  12. Bibers K, Kalnis M (1999) Control of biopolymer poly-β-hydroxybutyrate characteristics by γ-irradiation. Mech Compos Mater 35:169–178

    Article  CAS  Google Scholar 

  13. Oliveira LM, Araujo ES, Guedes SML (2006) Gamma irradiation effects on poly(hydroxybutyrate). Polym Degrad Stab 91:2157–2162

    Article  CAS  Google Scholar 

  14. Choi JS, Park WH (2004) Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polym Test 23:455–460

    Article  CAS  Google Scholar 

  15. Janigová I, Lacík I, Chodák I (2002) Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym Degrad Stab 77:35–41

    Article  Google Scholar 

  16. Baltier RC, Innocentini Mei LH, Bartoli J (2003) Study of the effect of plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate) PHB compounds. Macromol Symp 197:33–44

    Article  Google Scholar 

  17. Yoshie N, Nakato K, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (2000) Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate). Polymer 41:3227–3233

    Article  CAS  Google Scholar 

  18. Wang L, Zhu W, Wang X, Chen X, Chen GQ, Xu K (2008) Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173

    Article  CAS  Google Scholar 

  19. Grillo Fernandes E, Pietrini M, Chiellini E (2004) Thermo-mechanical and morphological characterization of plasticized poly((R)-3-hydroxybutyric acid). Macromol Symposia 218:157–164

    Google Scholar 

  20. Rodrigues JAFR, Parra DF, Lug AB (2005) Crystallization on films of PHB/PEG blends, evaluation by DSC. J Therm Anal Calorim 79:379–381

    Article  CAS  Google Scholar 

  21. Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physicalechemical and biodegradation properties of poly (3-hydroxybutyrate). Polym Degrad Stab 91:1954–1959

    Article  CAS  Google Scholar 

  22. Hong SG, Hsu HW, Ye MT (2013) Thermal properties and applications of low molecular weight polyhydroxybutyrate. J Therm Anal Calorim 111:1243–1250

    Article  CAS  Google Scholar 

  23. Choi JS, Park WH (2004) Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polym Test 23:455–460

    Article  CAS  Google Scholar 

  24. Rajan PAR, Sreekumar K, Joseph M (2012) Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J Appl Poly Sci 124:3357–3362

    Article  CAS  Google Scholar 

  25. El-Hadi AM (2013) Influence of microcrystalline cellulose fiber (MCCF) on the morphology of poly(3-hydroxybutyrate) (PHB). Colloid Polym Sci 291:743–756

    Article  CAS  Google Scholar 

  26. Kai W, He Y, Inoue Y (2005) Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym Int 54:780–789

    Article  CAS  Google Scholar 

  27. He Y, Inoue Y (2004) Effect of α-cyclodextrin on the crystallization of poly(3-hydroxybutyrate). J Poly Sci Part B Poly Phys 42:3461–3469

    Article  CAS  Google Scholar 

  28. Jing X (2012) Effect of low thermally reduced graphene loadings on the crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate). Ind Eng Chem Res 51:13686–13691

    Article  CAS  Google Scholar 

  29. Miloaga D, Hosein H, Misra M, Drzal L (2007) Crystallization of poly(3-hydroxybutyrate) by exfoliated graphite nanoplatelets. J Appl Polym Sci 106:2548–2558

    Article  CAS  Google Scholar 

  30. Yun S, Gadd G, Latella B, Lo V, Russell R, Holden P (2008) Mechanical properties of biodegradable polyhydroxyalkanoates/single wall carbon nanotube nanocomposite films. Polym Bull 61:267–275

    Article  CAS  Google Scholar 

  31. Alata H, Hexig B, Inoue Y (2006) Effect of poly(vinyl alcohol) fine particles as a novel biodegradable nucleating agent on the crystallization of poly(3-hydroxybutyrate). J Poly Sci Part B Poly Phys 44:1813–1820

    Article  CAS  Google Scholar 

  32. Braham PJ (1984) Nucleation behaviour of poly-3-hyd roxy-butyrate. J Mater Sci 19:3826–3834

    Article  Google Scholar 

  33. Jacquel N, Tajima K, Nakamura N, Kawachi H, Pan P, Inoue Y (2010) Nucleation mechanism of polyhydroxybutyrate and poly(hydroxybutyrate-co-hydroxyhexanoate) crystallized by orotic acid as a nucleating agent. J Appl Polym Sci 115:709–715

    Article  CAS  Google Scholar 

  34. Maiti P, Batt C, Giannelis E (2007) New biodegradable polyhydroxybutyrate and layered silicate nanocomposites. Biomacromolecules 8:3393–3400

    Article  CAS  Google Scholar 

  35. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of nanobiocomposites of poly(3-hydroxybutyrate) and layered silicates. J Appl Polym Sci 108:2787–2801

    Article  CAS  Google Scholar 

  36. Bordes P, Hablot E, Pollet E, Avérous L (2009) Polym Degrad Stab 94:789–796

    Article  CAS  Google Scholar 

  37. Botana A, Mollo M, Eisenberg P, Sanchez RMT (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47:263–270

    Article  CAS  Google Scholar 

  38. Xu C, Qiu Z (2011) Crystallization behavior and thermal property of biodegradable poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposites. Polym Adv Technol 22:538–544

    Article  CAS  Google Scholar 

  39. Xu C, Qiu Z (2009) Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly(hydroxybutyrate) and multiwalled carbon nanotubes nanocomposites. J Poly Sci Part B Poly Phys 47:2238–2246

    Article  CAS  Google Scholar 

  40. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97:1979–1987

    Article  CAS  Google Scholar 

  41. Weihua K, He Y, Asakawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94:2466–2474

    Article  CAS  Google Scholar 

  42. Mousavioun P, George GA, Doherty WOS (2012) Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polym Degrad Stab 97:1114–1122

    Article  CAS  Google Scholar 

  43. de Koning GJM, Scheeren AHC, Lemstra PJ (1994) Crystallization phenomena in bacterial poly((R)-3-hydroxybutyrate): 3. Toughening via texture changes. Polymer 35:4598–4605

    Article  Google Scholar 

  44. Black SN, Dobbs BP, Dempsey S, Davey R (1990) Crystal chemistry and nucleating agents; saccharin and poly-3-hydroxybutyrate. J Mater Sci Lett 9:51–56

    Article  CAS  Google Scholar 

  45. Al-Salah HA (1998) Crystallization and morphology of poly(ethylene succinate) and poly(b-hydroxybutyrate) blends. Polym Bull 41:593–600

    Article  CAS  Google Scholar 

  46. El-Hadi AM (2011) Effect of processing conditions on the development of morphological features of banded or nonbanded spherulites of poly(3-hydroxybutyrate) (PHB) and polylactic acid (PLLA) blends. Polym Eng Sci 51:2191–2201

    Article  CAS  Google Scholar 

  47. Avella M, Martuscelli E, Greco P (1991) Crystallization behaviour of poly(ethylene oxide) from poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase structuring, morphology and thermal behavior. Polymer 32:1647–1653

    Article  CAS  Google Scholar 

  48. Roa JPB, de O’Patrício PSR, Oréfice L, Lago RM (2013) Improvement of the thermal properties of poly(3-hydroxybutyrate) (PHB) by low molecular weight polypropylene glycol (LMWPPG) addition. J Appl Polym Sci 128:3019–3025

    Article  CAS  Google Scholar 

  49. Abdel-Hady EE, Abdel-Hamed MO, Hammam AM (2011) Miscibility and crystallization behavior of poly(3-hydroxybutyrate) and poly(ethylene glycol) blends studied by positron annihilation spectroscopy. J Phys Conf Ser (IOP Sci) 262:012004

    Article  Google Scholar 

  50. Reusch RN (2013) The role of short-chain conjugated poly-(R)-3-hydroxybutyrate (phb) in protein folding. Int J Mol Sci 14:10727–10748

    Article  Google Scholar 

  51. Ziabicki A (1976) Fundamental of fiber spinning. Wiley, New York, pp 112–114

    Google Scholar 

  52. Razumovskii LP, Iordonskii AL, Zaikov GE (1992) Water in polymer, year book. In: Pethric RA, Chur NY (eds) Harwood Acodemic puplishers, vol 9 pp 139–150

  53. Razumovskii LP, Iordonskii AL, Zaikov GE, Zagreba ED, McNeil TC (1994) Sorption and diffusion of water and organic solvents in poly(β-hydroxybutyrate) films. Polym Degrad Stab 44:175–177

    Article  Google Scholar 

  54. Geoffry P, Morchessoult RH (1994) Spreading of poly(β-hydroxylalkanoate)s at the air-water interface: a model system for the nascent lyotropic state of bacterial polyesters polymer 35 :435–437

  55. Hobbs JK, Barham PJ (1997) The effect of water on the crystallization of thin films of poly(hydroxybutyrate). Polymer 38:3879–3883

    Article  CAS  Google Scholar 

  56. Lauzier C, Reval JF, Marchessault RH (1992) Topotactic crystallization of isolated poly(β-hydroxybutyrate) granules from alcaligenes eutrophus. FEMS Microbiol Lett 103:299–310

    CAS  Google Scholar 

  57. Bloembergen S, Holden DA (1986) Studies of composition and crystalinity of bacteria poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2865–2871

    Article  CAS  Google Scholar 

  58. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2005) Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 61:541–550

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mohamed El-Hadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed El-Hadi, A. Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly(3(R)-hydroxybutyrate) PHB/clay nanocomposites. Polym. Bull. 71, 1449–1470 (2014). https://doi.org/10.1007/s00289-014-1135-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1135-0

Keywords

Navigation