Skip to main content
Log in

Low band gap Schiff base polymers obtained by complexation with Lewis acids

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two Schiff base polymers were prepared from the respective monomers by condensation method using toluene and N-methyl-2-pyrrolidinone as solvent. They were complexed with Al(III), In(III), and Cu(II) trifluoromethane sulfonates (triflates), and AlCl3 Lewis acids and characterized by FT-IR, UV–Vis spectroscopy, and scanning electron microscopy (SEM). Homogeneous films were prepared by spin coating in the presence and absence of Lewis acids. Polymer–Lewis acid interaction was confirmed by FT-IR, UV–Vis spectroscopy, and SEM. Lewis acid composition in polymers was determined by FT-IR spectroscopy. Absorption spectra of these conjugated Schiff base polymer complexes exhibited smaller optical band gap than pristine polymers. These variations ranged from 2.4 to 1.4 and 3.3 to 2.0 eV. Absorption depends on the Lewis acid in the polymer and band gap on the nature of the metal incorporated in the polymeric backbone. Solubility increased by complexation. The obtained complexes were soluble in trifluoroacetic and formic acids and in m-cresol. Polymer–Lewis acid solutions in m-cresol were stable for 98 h; the others remained stable over several months. The results of this study revealed that optical, solubility, and band-gap properties of conjugated Schiff base polymers can be modified by Lewis acids and these could be studied by optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  2. Ramaprasad AT, Rao V (2010) Chitin–polyaniline blend as humidity sensor. Sens Actuators B Chem 148:117–125

    Article  Google Scholar 

  3. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Article  CAS  Google Scholar 

  4. Wang Q, J-l Li, Gao F, Li W-S, Wu K-Z (2008) Activated carbon coated with polyaniline as an electrode material in supercapacitors. New Carbon Mater 23:275–280

    Article  Google Scholar 

  5. Madden JD, Rinderknecht D, Anquetil PA, Hunter IW (2007) Creep and cycle life in polypyrrole actuators. Sens Actuators A Phys 133:210–217

    Article  Google Scholar 

  6. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  7. Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248(13–14):1455–1468

    Article  CAS  Google Scholar 

  8. Choi M-C, Kim Y, Ha C-S (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33:581–630

    Article  CAS  Google Scholar 

  9. Gazotti WA, Nogueira AF, Girotto EM, Micaroni L, Martini M, das Neves S, De Paoli MA (2001) Optical devices based on conductive polymers. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials and devices, vol 10. Academic Press, San Diego, pp 53–98

    Chapter  Google Scholar 

  10. Krinichnyi VI, Yudanova EI (2011) Structural effect of electron acceptor on charge transfer in poly(3-hexylthiophene)/methanofullerene bulk heterojunctions. Sol Energy Mater Sol Cells 95(8):2302–2313

    Article  CAS  Google Scholar 

  11. Chochos CL, Choulis SA (2011) How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog Polym Sci 36(10):1326–1414

    Article  CAS  Google Scholar 

  12. Long Y-Z, Li M-M, Gu C, Wan M, Duvail J-L, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36(10):1415–1442

    Article  CAS  Google Scholar 

  13. Bejbouji H, Vignau L, Miane JL, Dang M-T, Oualim M, Harmouchi M, Mouhsen A (2010) Polyaniline as a hole injection layer on organic photovoltaic cells. Sol Energy Mater Sol Cells 94(2):176–181

    Article  CAS  Google Scholar 

  14. Sata T (1994) Properties of composite membranes prepared from ion exchange membranes and conducting polymers V. Dependence of EMF of composite membranes prepared from anion exchange membranes and polypyrrole on relative humidity. J Membr Sci 91(1–2):199–207

    Article  CAS  Google Scholar 

  15. Li R, Lixin W, Haoyuan A, Fuqiang Z (2007) Study of lithium/polypyrrole secondary batteries with Lithium as cathode and polypyrrole anode. Rare Met 26(6):591–600

    Article  Google Scholar 

  16. Schuhmann W, Lammert R, Hämmerle M, Schmidt H-L (1991) Electrocatalytic properties of polypyrrole in amperometric electrodes. Biosens Bioelectron 6(8):689–697

    Article  CAS  Google Scholar 

  17. Belo D, Almeida M (2010) Transition metal complexes based on thiophene-dithiolene ligands. Coord Chem Rev 254(13–14):1479–1492

    Article  CAS  Google Scholar 

  18. Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–205

    Article  CAS  Google Scholar 

  19. Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91(11):954–985

    Article  CAS  Google Scholar 

  20. Niu H-J, Huang Y-D, Bai X-D, Li X (2004) Novel poly-Schiff bases containing 4,4′-diamino-triphenylamine as hole transport material for organic electronic device. Mater Lett 58(24):2979–2983

    Article  CAS  Google Scholar 

  21. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110(11):6736–6767

    Article  CAS  Google Scholar 

  22. Chidichimo G, Filippelli L (2010) Organic solar cells: problems and perspectives. Int J Photoenergy 2010, Article ID 123534. doi:10.1155/2010/123534

  23. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923

    Article  CAS  Google Scholar 

  24. Bernede JC (2008) Organic photovoltaic cells: history, principle and techniques. J Chil Chem Soc 53(3):1549–1564

    Article  CAS  Google Scholar 

  25. Kietzke T (2007) Recent advances in organic solar cells. Adv OptoElectron 2007, Article ID 40285. doi:10.1155/2007/40285

  26. Gunes S, Saricifci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324

    Article  Google Scholar 

  27. Brabec CJ, Sariciftci N, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11(1):15–26

    Article  CAS  Google Scholar 

  28. Lee KS, Won JI, Jung JC (1989) Synthesis and characterization of processable conducting polyazomethines. Makromol Chem 190:1547–1552

    Article  CAS  Google Scholar 

  29. Lee KS, Samoc M (1991) Third-order nonlinear optical properties of wholly aromatic polyazomethines. Polym Commun 32:361–362

    CAS  Google Scholar 

  30. Banerjee S, Gutch P, Saxena CJ (1995) Polyether azomethines. I. Synthesis and characterization. Polym Sci Part A 33(10):1719–1725

    Article  CAS  Google Scholar 

  31. Banerjee S, Gutch PK, Saxena CJ (1999) Poly-Schiff bases-IV. Synthesis and characterization of poly(etherazomethine)s. Des Monomers Polym 2(2):135–142

    Article  CAS  Google Scholar 

  32. Yang CJ, Jenekhe SA (1991) Conjugated aromatic poly(azomethines). Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem Mater 3(5):878–883

    Article  CAS  Google Scholar 

  33. Yang CJ, Jenekhe SA (1995) Conjugated aromatic polyimines. 2. Synthesis, structure and properties of new aromatic polyazomethines. Macromolecules 28(4):1180–1185

    Article  CAS  Google Scholar 

  34. Kim JY, Kim SH, Lee H-H, Ma W, Gong X (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576

    Article  CAS  Google Scholar 

  35. Scharher MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ (2006) Design rules for donors in bulk-heterojunction solar cells toward 10 % energy-conversion efficiency. Adv Mater 18:789–794

    Article  Google Scholar 

  36. Campaigne E, Budde WM, Schaefer GF (1963) p-Aminobenzaldehyde. Org Synth Coll 4:31

    Google Scholar 

  37. El-Shekeil AG, Al-Yusufy FA, Saknidy S (1997) DC conductivity of some polyazomethines. Polym Int 42:39–44

    Article  CAS  Google Scholar 

  38. Dalelio GF, Feigi DM, Kieffer NE, Mehta RK (1968) Polymeric azomethines. J Macromol Sci Chem A2(6):1223–1234

    Google Scholar 

  39. Dalelio GF, Strazik WF, Feigl DM, Schoenig RK (1968) Polymeric Schiff base. Alternate synthesis for iminobenzylidene polymers. J Macromol Sci Chem A1:1457–1475

    Google Scholar 

  40. Hu L, Frech R, Glatzhofer DT, Mason R, York SS (2008) Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system. Solid State Ion 179:401–408

    Article  CAS  Google Scholar 

  41. Mason RN, Hu L, Glatzhofer DT, Frech R (2010) Infrared spectroscopic and conductivity studies of poly(N-methylpropylenimine)/lithium triflate electrolytes. Solid State Ion 180:1626–1632

    Article  CAS  Google Scholar 

  42. Lopez-Garriga JJ, Babcock GT, Harrison JF (1986) Factors influencing the C:N stretching frequency in neutral and protonated Schiff’s base. J Am Chem Soc 108:7241–7251

    Article  CAS  Google Scholar 

  43. Wang C, Shieh S, Legoff E, Kanatzidiz MG (1996) Synthesis and characterization of a new conjugated aromatic poly(azomethine) derivative based on the 3′,4′-dibutyl-α-terthiophene building block. Macromolecules 29:3147–3156

    Article  CAS  Google Scholar 

  44. Colladet K, Nicolas M, Goris L, Lutsen L, Vanderzande D (2004) Low-band gap polymers for photovoltaic applications. Thin Solid Films 451(452):7–11

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Fondecyt 1120055 and DID-UACh (Grant No. S-2011-50) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, C.O., Huaiquimilla, D., Sobarzo, P. et al. Low band gap Schiff base polymers obtained by complexation with Lewis acids. Polym. Bull. 70, 971–984 (2013). https://doi.org/10.1007/s00289-012-0857-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0857-0

Keywords

Navigation