Skip to main content
Log in

An improved method for preparing glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The features of microparticles, as size, surface structure, and morphology, depend, mainly, on the methodology used for their preparation. Emulsion polymerization techniques are undoubtedly among the most widespread. However, the use of toxic, volatile organic solvents represents a major disadvantage, namely, because of environmental issues. In this study, we prepared glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles by an improved water-in-oil emulsion technique using corn oil as organic phase. The application of this polymeric blend as microparticle is scarcely investigated. As resulting of the procedure here presented, spherical and smooth surface microparticles were obtained, with mean diameter of 16 μm. The cross-linking reaction between the aldehyde and the amino or the hydroxyl groups formed either an imine (Schiff’s base) or an acetal bond, respectively, as analyzed by infrared spectroscopy. The microparticles here described did not present cytotoxic potential. Accordingly, this study can find promising and successful application in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cascone MG, Sim B, Dowries S (1995) Blends of synthetic and natural polymers as drug delivery systems for growth hormone. Biomaterials 16:569–574

    Article  CAS  Google Scholar 

  2. Parida UK, Nayak AK, Binhani BK, Nayak PL (2011) Synthesis and characterization of chitosan–polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol 2:414–425

    Article  CAS  Google Scholar 

  3. Peniche C, Argüelles-Monal W, Peniche H, Acosta N (2003) Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci 3:511–520

    Article  CAS  Google Scholar 

  4. Kamari A, Pulford ID, Hargreaves JSJ (2011) Chitosan as a potential amendment to remediate metal contaminated soil—a characterisation study. Colloids Surf B 82:71–80

    Article  CAS  Google Scholar 

  5. Kumar M, Tripathi BP, Shahi VK (2009) Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. J Hazard Mater 172:1041–1048

    Article  CAS  Google Scholar 

  6. Portes E, Gardrat C, Castellan A, Coma V (2009) Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr Polym 76:578–584

    Article  CAS  Google Scholar 

  7. Anchisi C, Meloni MC, Maccioni AM (2006) Chitosan beads loaded with essential oils in cosmetic formulations. J Cosmet Sci 57:205–214

    CAS  Google Scholar 

  8. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking of by freezing/thawing methods. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  9. Zheng H, Du Y, Yu J, Huang R, Zhang L (2001) Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J Appl Polym Sci 80:2558–2565

    Article  CAS  Google Scholar 

  10. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274:1–33

    Article  CAS  Google Scholar 

  11. Yang Q, Dou F, Liang B, Shen Q (2005) Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydr Polym 59:205–210

    Article  Google Scholar 

  12. Wan Ngah WS, Endud CS, Mayanar R (2002) Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50:181–190

    Article  Google Scholar 

  13. Varshosaz J, Sadrai H, Alinagari R (2004) Nasal delivery of insulin using chitosan microspheres. J Microencapsul 21:761–774

    Article  CAS  Google Scholar 

  14. Jayakrishnan A, Jameela SR (1996) Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials 17:471–484

    Article  CAS  Google Scholar 

  15. Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polym Int 53:911–918

    Article  CAS  Google Scholar 

  16. Gunasekaran S, Wang T, Chai C (2006) Swelling of pH-sensitive chitosan–poly(vinyl alcohol) hydrogels. J Appl Polym Sci 102:4665–4671

    Article  CAS  Google Scholar 

  17. Svang-Ariyaskul A, Huang RYM, Douglas PL, Pal R, Feng X, Chen P, Liu L (2006) Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. J Membr Sci 280:815–823

    Article  CAS  Google Scholar 

  18. Campos E (2006) Preparação e caracterização de sistemas de libertação controlada para aplicação oftalmológica. MSc Dissertation, University of Coimbra

  19. Burgess DJ, Hickey AJ (2002) Microsphere technology and applications. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker Inc, New York, pp 1783–1794

    Google Scholar 

  20. Freitas S, Merkle HP, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of art of microspheres preparation process technology. J Control Release 102:313–332

    Article  CAS  Google Scholar 

  21. Hamdi G, Ponchel G, Duchêne D (1998) An original method for studying in vitro the enzymatic degradation of cross-linked starch microspheres. J Control Release 55:193–201

    Article  CAS  Google Scholar 

  22. Stertman L, Lundgren E, Sjöholm I (2006) Starch microparticles as a vaccine adjuvant: only uptake in Peyer’s patches decides the profile of the immune response. Vaccine 24:3661–3668

    Article  CAS  Google Scholar 

  23. Longo WE, Iwata H, Lindheimer TA, Goldberg EP (1982) Preparation of hydrophilic albumin microspheres using polymeric dispersing agents. J Pharm Sci 71:1323–1328

    Article  CAS  Google Scholar 

  24. Jameela SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as long acting biodegradable drug delivery vehicle: studies on the in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775

    Article  CAS  Google Scholar 

  25. Genta I, Costantini M, Asti A, Conti B, Montanari L (1998) Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydr Polym 36:81–88

    Article  CAS  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  27. Santos A (2002) Água trocável do pulmao: Contribuição para o desenvolvimento de uma metodologia para a sua avaliação. PhD Dissertation, University of Coimbra

  28. Campos E, Cordeiro R, Santos AC, Matos C, Gil MH (2011) Design and characterization of bi-soft segmented polyurethane microparticles for biomedical application. Colloids Surf B 88:477–482

    Article  CAS  Google Scholar 

  29. Şanlı O, Karaca İ, Işıklan N (2009) Preparation, characterization, and salicylic acid release behavior of chitosan/poly(vinyl alcohol) blend microspheres. J Appl Polym Sci 111:2731–2740

    Article  Google Scholar 

  30. Udrea LE, Hritcu D, Popa MI, Rotariu O (2011) Preparation and characterization of polyvinyl alcohol–chitosan biocompatible magnetic microparticles. J Magn Magn Mater 323:7–13

    Article  Google Scholar 

  31. Ramakrishna P, Mallikarjuna B, Babu AC, Sudhakar P, Rao KC, Subha MCS (2011) Interpenetrating polymer network of crosslinked blend microspheres for controlled release of acebutolol HCl. J Appl Pharm Sci 01:212–219

    Google Scholar 

  32. Arshady R (1990) Albumin microspheres and microcapsules: methodology of manufacturing techniques. J Control Release 14:111–131

    Article  CAS  Google Scholar 

  33. Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci 31:466–487

    Article  CAS  Google Scholar 

  34. Chang C-M, Bodmeier R (1996) Organic solvent-free polymeric microspheres prepared aqueous colloidal polymer dispersions by a w/o-emulsion technique. Int J Pharm 130:187–194

    Article  CAS  Google Scholar 

  35. Genta I, Perugini P, Conti B, Pavanetto F (1997) A multiple emulsion method to entrap a lipophilic compound into chitosan microspheres. Int J Pharm 152:237–246

    Article  CAS  Google Scholar 

  36. Albertsson A-C, Carlfors J, Struresson C (1996) Preparation and characterization of poly(adipic anhydride) microspheres for ocular drug delivery. J Appl Polym Sci 62:695–705

    Article  CAS  Google Scholar 

  37. Campos E, Cordeiro R, Alves P, Rasteiro MG, Gil MH (2008) Polyurethane-based microparticles: formulation and influence of processes variables on its characteristics. J Microencapsul 25:154–169

    Article  CAS  Google Scholar 

  38. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481

    Article  Google Scholar 

  39. Kim OH, Lee K, Kim K, Lee BH, Choe S (2006) Optimum conditions for preparing micron-sized PMMA beads in the dispersion polymerization using PVA. Colloid Polym Sci 284:909–915

    Article  CAS  Google Scholar 

  40. Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2004) Preparation, surface modification and characterisation of solution cast starch PVA blend films. Polym Test 23:17–27

    Article  CAS  Google Scholar 

  41. Jegal J, Lee K-H (1999) Nanofiltration membranes based on poly(vinyl alcohol) and ionic polymers. J Appl Polym Sci 72:1755–1762

    Article  CAS  Google Scholar 

  42. Dekker A, Panfil C, Valdor M, Pennartz G, Richter H, Mittermayer CH, Kirkpatrick CJ (1994) Quantitative methods for in vitro cytotoxicity testing of biomaterials. Cell Mater 4:01–112

    Google Scholar 

  43. Scudiero DA, Shoemaker RH, Pauli KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    CAS  Google Scholar 

  44. Ramires PA, Milella E (2002) Biocompatibility of poly(vinyl alcohol)-hyaluronic acid and poly(vinyl alcohol)–gellan membranes crosslinked by glutaraldehyde vapors. J Mater Sci Mater Med 13:119–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Vítor Redondo (Institute Pedro Nunes, Coimbra, Portugal) for providing the optical microscopy facility and for the particle size analysis. Authors also thank Prof. Ana Cristina Santos (Faculty of Medicine, University of Coimbra, Portugal) for conducting MTT assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, E., Coimbra, P. & Gil, M.H. An improved method for preparing glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles. Polym. Bull. 70, 549–561 (2013). https://doi.org/10.1007/s00289-012-0853-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0853-4

Keywords

Navigation