Skip to main content
Log in

Reactive processing of a non-additivated isotactic polypropylene: mechanical and morphological properties on molten and solid states

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Isotactic polypropylene (iPP) is a thermoplastic with several desirable properties as it can be modified by additives and processing, making it one of the most versatile and popular polymers. In this context, we present a detailed study of morphological and mechanical properties of non-additivated iPP produced by reactive processing, mainly concerning the effect of controlled radicalar degradation on polymer structure in molten and solid states. Melt rheology and size exclusion chromatography analyses evidenced the reduction on viscosity and moduli in dependence of molecular weight by the addition of commercial peroxide. The behavior in solid state showed that smaller chains of degraded iPP at high temperatures exhibited greater mobility resulting in a more viscous response upon a mechanical loading. Moreover, β-form crystals were suppressed by molecular weight reduction as suggested by X-ray diffraction. This finding suggests that smaller chains have higher mobility, and consequently are less susceptible to shear deformations during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Azizi H, Ghasemi I (2004) Reactive extrusion of polypropylene: production of controlled-rheology polypropylene (CRPP) by peroxide-promoted degradation. Polym Test 23(2):137–143

    Article  CAS  Google Scholar 

  2. Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24:81–142

    Article  CAS  Google Scholar 

  3. Zhou W, Zhu S (1997) ESR study on peroxide modification of polypropylene. Ind Eng Chem Res 36:1130–1135

    Article  CAS  Google Scholar 

  4. Wang X, Yu WC, Nie QL, Guo Y, Du JA (2011) A real-time study on the evolution of the degradation of polypropylene during mixing process. J Appl Polym Sci 121(2):1220–1243

    Article  CAS  Google Scholar 

  5. Iedema PD, Remerie K, van der Ham M, Biemond E, Tacx J (2011) Controlled peroxide-induced degradation of polypropylene in a twin-screw extruder: change of molecular weight distribution under conditions controlled by micromixing. Chem Eng Sci 66(22):5474–5486

    Article  CAS  Google Scholar 

  6. Coiai S, Augier S, Pinzino C, Passaglia E (2010) Control of degradation of polypropylene during its radical functionalisation with furan and thiophene derivatives. Polym Degrad Stab 95(3):298–305

    Article  CAS  Google Scholar 

  7. Bertin D, Leblanc M, Marque SRA, Siri D (2010) Polypropylene degradation: theoretical and experimental investigations. Polym Degrad Stab 95(5):782–791

    Article  CAS  Google Scholar 

  8. Yoshiga A, Otaguro H, Parra DF, Lima LFCP, Lugao AB (2009) Controlled degradation and crosslinking of polypropylene induced by gamma radiation and acetylene. Polym Bull 63(3):397–409

    Article  CAS  Google Scholar 

  9. Ni QL, Fan JQ, Niu H, Dong JY (2011) Enhancement of graft yield and control of degradation during polypropylene maleation in the presence of polyfunctional monomer. J Appl Polym Sci 121(5):2512–2517

    Article  CAS  Google Scholar 

  10. Scorah MJ, Zhu SH, Psarreas A, McManus NT, Dhib R, Tzoganakis C, Penlidis A (2009) Peroxide-controlled degradation of polypropylene using a tetra-functional initiator. Polym Eng Sci 49(9):1760–1766

    Article  CAS  Google Scholar 

  11. Shukla SK, Srivastava D (2001) Thermo-oxidative degradation and stabilization of polypropylene: structural changes and its correlation with properties. J Polym Mater 18(3):259–266

    CAS  Google Scholar 

  12. Gensler R, Plummer CJG, Kausch HH, Kramer E, Pauquet JR, Zweifel H (2000) Thermo-oxidative degradation of isotactic polypropylene at high temperatures: phenolic antioxidants versus HAS. Polym Degrad Stab 67(2):195–208

    Article  CAS  Google Scholar 

  13. Azizi H, Ghasemi I, Karrabi Q (2008) Controlled-peroxide degradation of polypropylene: rheological properties and prediction of MWD from rheological data. Polym Test 27(5):548–554

    Article  CAS  Google Scholar 

  14. Machado AV, Maia JM, Canevarolo SV, Covas JA (2004) Evolution of peroxide-induced thermomechanical degradation of polypropylene along the extruder. J Appl Polym Sci 91(4):2711–2720

    Article  CAS  Google Scholar 

  15. Huang C, Duever TA, Tzoganakis C (1997) Kinetic parameter estimation in peroxide initiated degradation of polypropylene. Polym React Eng 5(1–2):1–24

    CAS  Google Scholar 

  16. Tzoganakis C, Vlachopoulos J, Hamielec AE (1988) Production of controlled-rheology polypropylene resins by peroxide promoted degradation during extrusion. Polym Eng Sci 28(3):170–180

    Article  CAS  Google Scholar 

  17. Tzoganakis C, Vlachopoulos J, Hamielec AE (1988) Modeling of the peroxide degradation of polypropylene. Int Polym Proc 3(3):141–150

    CAS  Google Scholar 

  18. Rätzsch M, Arnold M, Borsig E, Bucka H, Reichelt N (2002) Radical reactions on polypropylene in the solid state. Prog Polym Sci 27:1195–1282

    Article  Google Scholar 

  19. Xanthos M (1992) Reactive extrusion: principles and practice. Hanser Publishers, New York

    Google Scholar 

  20. Wapperom P, Keunings R (2001) Numerical simulation of branched polymer melts in transient complex flow using pom–pom models. J Non-Newton Fluid 97(2–3):267–281

    Article  CAS  Google Scholar 

  21. Dubois C, Ait-Kadi A, Tanguy PA (1998) Chemorheology of polyurethane systems as predicted from Monte Carlo simulations of their evolutive molecular weight distribution. J Rheol 42(3):435–452

    Article  CAS  Google Scholar 

  22. Malkin AY (1995) Nonlinearity in rheology—an essay of classification. Rheol Acta 34(1):27–39

    Article  CAS  Google Scholar 

  23. Bird RB, Carreau PJ (1968) A nonlinear viscoelastic model for polymer solutions and melts. I. Chem Eng Sci 23(5):427

    Article  Google Scholar 

  24. Carreau PJ, Macdonal If, Bird RB (1968) A nonlinear viscoelastic model for polymer solutions and melts. 2. Chem Eng Sci 23(8):901

    Article  CAS  Google Scholar 

  25. Dougherty TJ, Krieger IM (1959) Potential around a charged colloidal sphere. J Phys Chem-US 63(11):1869–1872

    Article  CAS  Google Scholar 

  26. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  27. Iedema PD, Willems C, van Vliet G, Bunge W, Mutsers SMP, Hoefsloot HCJ (2001) Using molecular weight distributions to determine the kinetics of peroxide-induced degradation of polypropylene. Chem Eng Sci 56(12):3659–3669

    Article  CAS  Google Scholar 

  28. Sheng BR, Li B, Xie BH, Yang W, Feng HM, Yang MB (2008) Influences of molecular weight and crystalline structure on fracture behavior of controlled-rheology-polypropylene prepared by reactive extrusion. Polym Degrad Stab 93(1):225–232

    Article  CAS  Google Scholar 

  29. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  30. Miller FA, Mayo DW, Hannah RW (2004) Course notes on the interpretation of infrared and Raman spectra. Wiley, Hoboken, NJ

    Google Scholar 

  31. Barnes HA (2000) A handbook of elementary rheology. The University of Wales Institute of Non-Newtonian Fluid Mechanics, Aberystwyth

    Google Scholar 

  32. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26(6):895–944

    Article  CAS  Google Scholar 

  33. Steeman PAM (1998) A numerical study of various rheological polydispersity measures. Rheol Acta 37(6):583–592

    Article  CAS  Google Scholar 

  34. Malkin AY (1994) Rheology fundamentals. ChemTec Publishing, Montreal

    Google Scholar 

  35. Moore EP (1996) Polypropylene handbook: polymerization, characterization, properties, applications. Hanser Publishers, New York

    Google Scholar 

  36. Karian HG (2003) Handbook of polypropylene and polypropylene composites, 2nd edn. Marcel Dekker Inc., New York

    Book  Google Scholar 

  37. Machado G, Denardin ELG, Kinast EJ, Gonçalves MC, de Luca MA, Teixeira SR, Samios D (2005) Crystalline properties and morphological changes in plastically deformed isotactic polypropylene evaluated by X-ray diffraction and transmission electron microscopy. Eur Polym J 41(1):129–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Rafael Salomão, Dr. Mauro A. Soto Oviedo, Dr. Carlos A. Correa, and Dr. Otávio Bianchi for the very helpful discussion. Material and financial support by Braskem S/A and CNPq—National Counsel of Technological and Scientific Development is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio G. Echeverrigaray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echeverrigaray, S.G., Cruz, R.C.D. & Oliveira, R.V.B. Reactive processing of a non-additivated isotactic polypropylene: mechanical and morphological properties on molten and solid states. Polym. Bull. 70, 1237–1250 (2013). https://doi.org/10.1007/s00289-012-0845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0845-4

Keywords

Navigation