Skip to main content
Log in

Preparation and characterization of smart hydrogel nanocomposites sensitive to oxidation–reduction

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Honeycomb-patterned hydrogel films sensitive to environmental oxidation–reduction supporting nanoparticle by adsorption were fabricated through the photopolymerization of ruthenium(4-vinyl-4′-methyl-2,2′-bipyridine)bis(2,2′-bipyridine)bis(hexaflurophosphate) and N-isopropylacrylamide. Nanoparticle adsorption by the hydrogel film was controlled by the dynamic changes in the surface morphology of the film in relation to environmental oxidation–reduction, which induces change of the oxidized and reduced states of ruthenium ion included in the hydrogel. For the adsorption of nanoparticles in the patterned hydrogel film, silver nanoparticles were immobilized in the hydrogel surface. Adsorptivity was obtained through measuring the released concentration of the silver nanoparticles using UV–vis spectroscopy in an aqueous solution. Desorption of Ag nanoparticles from the hydrogel surface was found to be larger in the oxidizing solution than in the reducing solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding Z, Chen G, Hoffman AS (1998) Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin. J Biomed Mater Res 9:498–505

    Article  Google Scholar 

  2. Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen GH, Harris JM, Hoffman AS (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378:472–474

    Article  CAS  Google Scholar 

  3. Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Polymer gels with engineered environmentally responsive surface patterns. Nature 393:149–152

    Article  CAS  Google Scholar 

  4. Hrouz J, Ilavsk′y M, Ulbrich K, Kopeˇcek J (1981) The photoelastic behaviour of dry and swollen networks of poly(N,N-diethylacrylamide) and of its copolymers with N-tert-butylacrylamide. Eur Polym J 17:361–366

    Article  CAS  Google Scholar 

  5. Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354:291–293

    Article  CAS  Google Scholar 

  6. Kokufuta E, Tanaka T (1991) Biochemically controlled thermal phase transition of gels. Macromolecules 24:1605–1607

    Article  CAS  Google Scholar 

  7. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347

    Article  CAS  Google Scholar 

  8. Packhaeuser CB, Schnieders J, Oster CG, Kissel T (2004) In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 58:445–455

    Article  CAS  Google Scholar 

  9. Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Controlled Release 80:9–28

    Article  CAS  Google Scholar 

  10. Jeong B, Bae YH, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Article  CAS  Google Scholar 

  11. Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:305–311

    Article  CAS  Google Scholar 

  12. Hoffman AS, Affrassiabi A, Dong LC (1986) Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions. J Controlled Release 4:213–222

    Article  CAS  Google Scholar 

  13. Bae YH, Okano T, Hsu R, Kim SW (1987) Thermo-sensitive polymers as on-off switches for drug release. Macromol Rapid Commun 8:481–485

    Article  CAS  Google Scholar 

  14. Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32:1083–1122

    Article  CAS  Google Scholar 

  15. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218

    Article  CAS  Google Scholar 

  16. Kuckling D, Vo CD, Wohlrab SE (2002) Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking. Langmuir 18:4263–4269

    Article  CAS  Google Scholar 

  17. Kuckling D, Vo CD, Adler HJP, Volkel A, Colfen H (2006) Preparation and characterization of photo-cross-linked thermosensitive PNIPAAm. Macromolecules 39:1585–1591

    Article  CAS  Google Scholar 

  18. Beines PW, Klosterkamp I, Menges B, Jonas U, Knoll W (2007) Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers. Langmuir 23:2231–2238

    Article  CAS  Google Scholar 

  19. Pitois O, Francois B (1999) Crystallization of condensation droplets on a liquid surface. Colloid Polym Sci 277:574–578

    Article  CAS  Google Scholar 

  20. Maruyama N, Koito T, Nishida J, Sawadaishi T, Cieren X, Ijiro K, Karthaus O, Shimomura M (1998) Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327–329:854–856

    Article  Google Scholar 

  21. Yabu H, Shimomura M (2005) Simple Fabrication of Micro Lens Arrays. Langmuir 21:1709–1711

    Article  CAS  Google Scholar 

  22. Tsuji S, Kawaguchi H (2005) Colored thin films prepared from hydrogel microspheres. Langmuir 21:8439–8442

    Article  CAS  Google Scholar 

  23. Maeda Y, Yoshida R (2009) Fabrication of micropatterned thermosensitive gel with highly-ordered honeycomb surface and inverse opal structure. Biomed Microdevices 11:809–815

    Article  Google Scholar 

  24. Kim BS, Basavaraja C, Jo EA, Kim DG, Huh DS (2010) Effect of amphiphilic copolymer containing ruthenium tris(bipyridyl) photosensitizer on the formation of honeycomb-patterned film. Polymer 51:3365–3371

    Article  CAS  Google Scholar 

  25. Roncali J (1997) Linearly extended π-donors: when tetrathiafulvalene meets conjugated oligomers and polymers. J Mater Chem 7:72307–72321

    Article  Google Scholar 

  26. Kim BS, Kim WJ, Kim YD, Huh DS (2011) Silver immobilization on honeycomb-patterned polyvinylpyrrolidone thin films via an electroless process. Bull Kor Chem Soc 32:4221–4226

    Article  CAS  Google Scholar 

  27. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135

    Article  CAS  Google Scholar 

  28. Akamatsu K, Takei S, Mizuhata M, Kajinami A (2000) Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359:55–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea and funded by the Ministry of Education, Science, and Technology (NRF) (2011-0025853). Prof. Huh is grateful to Prof. Kozo Kuchitsu for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Sung Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Basavaraja, C., Yamaguchi, T. et al. Preparation and characterization of smart hydrogel nanocomposites sensitive to oxidation–reduction. Polym. Bull. 70, 207–220 (2013). https://doi.org/10.1007/s00289-012-0825-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0825-8

Keywords

Navigation