Skip to main content
Log in

Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) is a well-known biodegradable and biocompatible polyester with intrinsically slow crystallization rate. To extend its applications to the field where heat resistance is required, increasing the crystallization rate of the material becomes critical. In this note, the nucleation effect of supramolecular inclusion complex (IC), organized by non-covalent interactions through threading α-cyclodextrin molecules onto PLA chains, on the crystallization of PLA was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. The formation of IC was confirmed by wide-angle X-ray diffraction and DSC measurements. It was found that the presence of PLA-IC significantly promoted the crystallization of PLA from both the non-isothermal and isothermal crystallization experiments. The nucleation mechanism was also discussed to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm 21:117–132

    Article  CAS  Google Scholar 

  2. Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718

    Article  CAS  Google Scholar 

  3. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  4. Tsuji H, Takai H, Fukuda N, Takikawa H (2006) Non-isothermal crystallization behavior of poly(l-lactic acid) in the presence of various additives. Macromol Mater Eng 291:325–335

    Article  CAS  Google Scholar 

  5. Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J Appl Polym Sci 89:1203–1210

    Article  CAS  Google Scholar 

  6. Li M, Hu D, Wang Y, Shen C (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50:2298–2305

    Article  CAS  Google Scholar 

  7. Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131

    Article  CAS  Google Scholar 

  8. Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45:8239–8251

    Article  CAS  Google Scholar 

  9. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules 44:6496–6502

    Article  CAS  Google Scholar 

  10. Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces 3:3744–3753

    Article  CAS  Google Scholar 

  11. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411

    Article  CAS  Google Scholar 

  12. Li J, Chen D, Gui B, Gu M, Ren J (2011) Crystallization morphology and crystallization kinetics of poly(lactic acid): effect of N-aminophthalimide as nucleating agent. Polym Bull 67:775–791

    Article  CAS  Google Scholar 

  13. Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules 44:1233–1237

    Article  CAS  Google Scholar 

  14. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Nucleating agent for poly(l-lactic acid)-an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103:198–203

    Article  CAS  Google Scholar 

  15. Xu H, Tang S, Chen J, Yin P, Pu W, Lu Y (2012) Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly((d-lactic acid) blends with moderate optical purity. Polym Bull 68:1135–1151

    Article  CAS  Google Scholar 

  16. Tachibana Y, Maeda T, Ito O, Maeda Y, Kunioka M (2010) Biobased myo-inositol as nucleator and stabilizer for poly(lactic acid). Polym Degrad Stab 95:1321–1329

    Article  CAS  Google Scholar 

  17. Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(l-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303

    Article  CAS  Google Scholar 

  18. Wang Y, Tong B, Hou S, Li M, Shen C (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos A 42:66–74

    Article  CAS  Google Scholar 

  19. Cai J, Liu M, Wang L, Yao K, Li S, Xiong H (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947

    Article  CAS  Google Scholar 

  20. Wenz G (1994) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed 33:803–822

    Article  Google Scholar 

  21. Inoue Y, Hoshi H, Sakurai M, Chûjô R (1985) Geometry of cyclohexaamylose inclusion complexes with some substituted benzenes in aqueous solution based on carbon-13 NMR chemical shifts. J Am Chem Soc 107:2319–2323

    Article  CAS  Google Scholar 

  22. Harada A, Nishiyama T, Kawaguchi Y, Okada M, Kamachi M (1997) Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins. Macromolecules 30:7115–7118

    Article  CAS  Google Scholar 

  23. He Y, Inoue Y (2003) α-Cyclodextrin-enhanced crystallization of poly(3-hydroxybutyrate). Biomacromolecules 4:1865–1867

    Article  CAS  Google Scholar 

  24. Vogel R, Tändler B, Häussler L, Jehnichen D, Brünig H (2006) Melt spinning of poly(3-hydroxybutyrate) fibers for tissue engineering using α-cyclodextrin/polymer inclusion complexes as the nucleating agent. Macromol Biosci 6:730–736

    Article  CAS  Google Scholar 

  25. Dong T, He Y, Zhu B, Shin KM, Inoue Y (2005) Nucleation mechanism of α-cyclodextrin-enhanced crystallization of some semicrystalline aliphatic polymers. Macromolecules 38:7736–7744

    Article  CAS  Google Scholar 

  26. Dong T, Mori T, Aoyama T, Inoue Y (2010) Rapid crystallization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer accelerated by cyclodextrin-complex as nucleating agent. Carbohydr Polym 80:387–393

    Article  CAS  Google Scholar 

  27. Pinheiro A, Mano JF (2009) Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym Test 28:89–95

    Article  CAS  Google Scholar 

  28. Rusa CC, Tonelli AE (2000) Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend. Macromolecules 33:5321–5324

    Article  CAS  Google Scholar 

  29. Ohya Y, Takamido S, Nagahama K, Ouchi T, Ooya T, Katoono R, Yui N (2007) Molecular “screw and nut”: α-cyclodextrin recognizes polylactide chirality. Macromolecules 40:6441–6444

    Article  CAS  Google Scholar 

  30. Takeo Y, Kuge T (1970) Complexes of starchy materials with organic compounds. Agric Biol Chem 34:1784–1794

    Google Scholar 

  31. Avrami M (1940) Kinetics of phase change. II transformation time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  32. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (50873094), the Project-sponsored by SRF for ROCS, State Education Ministry, and the Major Project in Public Interest of Henan Province (HNZB [2011] N91).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Wang, Y., Wang, K. et al. Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polym. Bull. 70, 195–206 (2013). https://doi.org/10.1007/s00289-012-0814-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0814-y

Keywords

Navigation