Skip to main content
Log in

Effect of SEBS on morphology, thermal, and mechanical properties of PP/organoclay nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A simultaneously increase in stiffness and toughness is needed for improving polypropylene (PP) competitiveness in automotive industry. The aim of this paper is to investigate the effects of styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) on mechanical and thermal properties of PP, in the presence and the absence of nanoclay. The amount of SEBS in PP was ranged to obtain the matrix with the most favorable stiffness–toughness balance. For this purpose, SEBS domain size and distribution in PP/SEBS blends was determined by means of atomic force microscopy and correlated with mechanical properties. The influence of SEBS on the crystalline structure of PP in PP/organoclay nanocomposites was investigated by X-ray diffraction and differential scanning calorimetry, a synergistic effect of SEBS and nanoclay being pointed out. Moreover large improvement in the impact strength (almost 22 times) was obtained in the case of SEBS-containing nanocomposite in comparison with the composite without SEBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li C, Deng H, Wang K, Zhang Q, Chen F, Fu Q (2011) Strengthening and toughening of thermoplastic polyolefin elastomer using polypropylene-grafted multiwalled carbon nanotubes. J Appl Polym Sci 121:2104–2112

    Article  CAS  Google Scholar 

  2. Hong CH, Lee YB, Bae JW, Jho JY, Nam BU, Hwang TW (2005) Preparation and mechanical properties of polypropylene/clay nanocomposites for automotive parts application. J Appl Polym Sci 98:427–433

    Article  CAS  Google Scholar 

  3. Jahani Y (2011) Comparison of the effect of mica and talc and chemical coupling on the rheology, morphology, and mechanical properties of polypropylene composites. Polym Adv Technol 22:942–950

    Article  CAS  Google Scholar 

  4. Liao CZ, Tjong SC (2011) Effects of carbon nanofibers on the fracture, mechanical, and thermal properties of PP/SEBS–g–MA blends. Polym Eng Sci 51:948–958

    Article  CAS  Google Scholar 

  5. Kobayashi Y, Otsuki Y, Kanai T (2010) Viscoelastic flow analysis of surface morphology on injection-molded polypropylene. Polym Eng Sci 50:2182–2189

    Article  CAS  Google Scholar 

  6. Tortorella N, Beatty CL (2008) Morphology and mechanical properties of impact modified polypropylene blends. Polym Eng Sci 48:2098–2110

    Article  Google Scholar 

  7. Bagheri H, Jahani Y, Haghighi MN, Hakim S, Fan ZQ (2011) Dynamic shear rheological behavior of PP/EPR in-reactor alloys synthesized by multi-stage sequential polymerization process. J Appl Polym Sci 120:3635–3641

    Article  CAS  Google Scholar 

  8. Matsuda Y, Hara M (2005) Effect of the volume fraction of dispersed phase on toughness of injection molded polypropylene blended with SEBS, SEPS, and SEP. Polym Eng Sci 45:1630–1638

    Article  CAS  Google Scholar 

  9. Ohlsson B, Hassander H, Tornell B (1996) Blends and thermoplastic interpenetrating polymer networks of polypropylene and polystyrene-block-poly(ethylene-stat-butylene)-block-polystyrene triblock copolymer 1. Morphology and structure-related properties. Polym Eng Sci 36:501–510

    Article  CAS  Google Scholar 

  10. Matsuda Y, Hara M (2006) Effect of the compatibility on toughness of injection-molded polypropylene blended with EPR and SEBS. Polym Eng Sci 46:29–38

    Article  CAS  Google Scholar 

  11. Ohlsson B, Tornell B (1998) Blends and interpenetrating polymer networks of polypropylene and polystyrene-block-poly(ethylene-stat-butylene)-block-polystyrene 2. Melt flow and injection molding properties. Polym Eng Sci 38:108–118

    Article  CAS  Google Scholar 

  12. Jain AK, Nagpal AK, Singhal R, Gupta NK (2000) Effect of dynamic crosslinking on impact strength and other mechanical properties of polypropylene/ethylene-propylene-diene rubber blends. J Appl Polym Sci 78:2089–2103

    Article  CAS  Google Scholar 

  13. Ha CS, Ray Chowdhury S, Kim GH, Kim I (2007) Polypropylene/ethylene–propylene–diene terpolymer blends. In: Nwabunma D, Kyu T (eds) Polyolefin blends. Wiley, New York, pp 411–440

    Chapter  Google Scholar 

  14. Razavi-Nouri M, Naderi G, Parvin A, Ghoreishy MHR (2011) Thermal properties and morphology of isotactic polypropylene/acrylonitrile–butadiene rubber blends in the presence and absence of a nanoclay. J Appl Polym Sci 121:1365–1371

    Article  CAS  Google Scholar 

  15. Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77:409–417

    Article  CAS  Google Scholar 

  16. Stricker F, Thomann Y, Mulhaupt R (1998) Influence of rubber particle size on mechanical properties of polypropylene–SEBS blends. J Appl Polym Sci 68:1891–1901

    Article  CAS  Google Scholar 

  17. Bassani A, Pessan LA, Hage E (2001) Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: effects of mixing condition and elastomer content. J Appl Polym Sci 82:2185–2193

    Article  CAS  Google Scholar 

  18. Bassani A, Pessan LA (2002) Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: effects of reactive and nonreactive compatibilization. J Appl Polym Sci 86:3466–3479

    Article  CAS  Google Scholar 

  19. Mae H, Omiya M, Kishimoto K (2008) Tensile behavior of polypropylene blended with bimodal distribution of styrene-ethylene-butadiene-styrene particle size. J Appl Polym Sci 107:3520–3528

    Article  CAS  Google Scholar 

  20. Mae H, Omiya M, Kishimoto K (2008) Material ductility and toughening mechanism of polypropylene blended with bimodal distributed particle size of styrene–ethylene–butadiene–styrene triblock copolymer at high strain rate. J Appl Polym Sci 110:3941–3953

    Article  CAS  Google Scholar 

  21. Kucera J, Nezbedova E (2007) Poly(propylene) with micro-fillers—the way of enhancement of toughness. Polym Adv Technol 18:112–116

    Article  CAS  Google Scholar 

  22. Karian HG (2003) Handbook of polypropylene and polypropylene composites, revised and expanded. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Viksne A, Berzina R, Andersone I, Belkova L (2010) Study of plastic compounds containing polypropylene and wood derived fillers from waste of different origin. J Appl Polym Sci 117:368–377

    CAS  Google Scholar 

  24. Mnif N, Massardier V, Kallel T, Elleuch B (2009) Study of the modification of the properties of (PP/EPR) blends with a view to preserving natural resources when elaborating new formulation and recycling polymers. Polym Compos 30:805–811

    Article  CAS  Google Scholar 

  25. Eroglu M (2007) Effect of talc and heat treatment on the properties of polypropylene/EVA composite. Intern J Sci Techn 2:63–73

    Google Scholar 

  26. Pascual J, Fages E, Fenollar O, Garcıa D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62:367–380

    Article  CAS  Google Scholar 

  27. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B 39:933–961

    Article  Google Scholar 

  28. Garces JM, Moll DJ, Bicerano J, Fibiger R, McLeod DG (2000) Polymeric nanocomposites for automotive applications. Adv Mater 12:1835–1839

    Article  CAS  Google Scholar 

  29. Jipa S, Zaharescu T, Supaphol P (2010) Thermal stability of isotactic polypropylene modified with calcium carbonate nanoparticles. Polym Bull 64:783–790

    Article  CAS  Google Scholar 

  30. Wang ZM, Nakajima H, Manias E, Chung TC (2003) Exfoliated PP/clay nanocomposites using ammonium-terminated PP as the organic modification for montmorillonite. Macromolecules 36:8919–8922

    Article  CAS  Google Scholar 

  31. Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett 1:295–298

    Article  CAS  Google Scholar 

  32. Palza H, Vergara R, Yazdani-Pedram M, Quijada R (2009) Polypropylene/clay nanocomposites: effect of different clays and compatibilizers on their morphology. J Appl Polym Sci 112:1278–1286

    Article  CAS  Google Scholar 

  33. Tjong SC, Bao SP, Liang GD (2005) Polypropylene/montmorillonite nanocomposites toughened with SEBS–g–MA: structure–property relationship. J Polym Sci, Part B 43:3112–3126

    Article  CAS  Google Scholar 

  34. Su FH, Huang HX (2009) Mechanical and rheological properties of PP/SEBS/OMMT ternary composites. J Appl Polym Sci 112:3016–3023

    Article  CAS  Google Scholar 

  35. Panaitescu DM, Donescu D, Bercu C, Vuluga DM, Iorga MD, Ghiurea M (2007) Polymer composites with cellulose microfibrils. Polym Eng Sci 47:1128–1234

    Article  Google Scholar 

  36. Ahmad Z, Kumar KD, Saroop M, Preschilla N, Biswas A, Bellare JR, Bhowmick AK (2010) Highly transparent thermoplastic elastomer from isotactic polypropylene and styrene/ethylene-butylene/styrene triblock copolymer: structure–property correlations. Polym Eng Sci 50:331–341

    Article  CAS  Google Scholar 

  37. Ohlsson B, Tornell B (1996) Melt miscibility in blends of polypropylene, polystyrene-block-poly(ethylene-stat-butylene)-block-polystyrene and processing oil from melting point depression. Polym Eng Sci 36:1547–1556

    Article  CAS  Google Scholar 

  38. Ferrer GG, Sanchez MS, Sanchez EV, Colomer FR, Ribelles JG (2000) Blends of styrene–butadiene–styrene triblock copolymer and isotactic polypropylene: morphology and thermomechanical properties. Polym Intern 49:853–859

    Article  CAS  Google Scholar 

  39. Tarapow JA, Bernal CR, Alvarez VA (2009) Mechanical properties of polypropylene/clay nanocomposites: effect of clay content, polymer/clay compatibility, and processing conditions. J Appl Polym Sci 111:768–778

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 7th framework program of the European Union (Project NANOTOUGH FP7-NMP-2007-LARGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Mihaela Panaitescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuluga, Z., Panaitescu, D.M., Radovici, C. et al. Effect of SEBS on morphology, thermal, and mechanical properties of PP/organoclay nanocomposites. Polym. Bull. 69, 1073–1091 (2012). https://doi.org/10.1007/s00289-012-0780-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0780-4

Keywords

Navigation