Skip to main content

Advertisement

Log in

AI Approaches to Cognitive Systems – The Example of Spatial Cognition

  • HAUPTBEITRAG
  • AI APPROACHES TO COGNITIVE SYSTEMS
  • Published:
Informatik-Spektrum Aims and scope

Abstract

Cognitive abilities can be studied by observing and interpreting natural systems or by developing artificial systems that interact with their environments in intelligent ways. Cognitive systems research connects both approaches. Typically, human requirements are in the focus of interest and systems are developed to interact with humans in as natural a way as possible. To achieve this goal, a deep understanding of human cognition is required. The present paper focuses on spatial cognition, i. e. the ability to perceive and conceive spatial environments and solve spatial tasks intelligently. It discusses artificial intelligence approaches to spatial cognition for supporting human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843

    Article  MATH  Google Scholar 

  2. Balbiani P, Condotta JF, Fariñas del Cerro L (1998) A model for reasoning about bidimensional temporal relations. In: Cohn A, Schubert L, Shapiro S (eds) Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference (KR-98), Morgan Kaufmann, Trento, Italy, pp 124–130

  3. Braitenberg V (1984) Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA

    Google Scholar 

  4. Egenhofer MJ (1991) Reasoning about binary topological relations. In: Günther O, Schek HJ (eds) Proceedings of the Second Symposium on Large Spatial Databases, SSD’91, Springer-Verlag, Berlin, Heidelberg, New York, pp 143–160

  5. Eschenbach C, Kulik L (1997) An axiomatic approach to the spatial relations underlying left-right and in front of-behind. In: Brewka G, Habel C, Nebel B (eds) KI-97: Advances in Artificial Intelligence, Springer-Verlag, Freiburg, Germany, pp 207–218

  6. Frank A (1991) Qualitative spatial reasoning with cardinal directions. In: Proceedings of the Seventh Austrian Conference on Artificial Intelligence, Springer-Verlag, Berlin, Heidelberg, New York

  7. Freksa C (1991) Qualitative spatial reasoning. In: Mark DM, Frank A (eds) Cognitive and Linguistic Aspects of Geographic Space, Kluwer, Dordrecht, Holland, pp 361–372

  8. Freksa C (1992) Using orientation information for qualitative spatial reasoning. In: Frank AU, Campari I, Formentini U (eds) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, Springer-Verlag, Berlin, Heidelberg, New York, pp 162–178

  9. Freksa C (1997) Spatial and temporal structures in cognitive processes. In: Freksa C, Jantzen M, Valk R (eds) Foundations of Computer Science: Potential – Theory – Cognition, Springer-Verlag, Berlin, Heidelberg, New York, pp 379–387

  10. Freksa C (2004) Spatial cognition: An AI perspective. In: de Mántaras RL, Saitta L (eds) Proceedings of the 16th European Conference on Artificial Intelligence, ECAI’2004, IOS Press, pp 1122–1128

  11. Goyal RK, Egenhofer MJ (1997) The direction-relation matrix: A representation for the direction relations between spatial objects

  12. Guesgen H (1989) Spatial reasoning based on Allen’s temporal logic. Tech. Rep. TR-89-049, ICSI, Berkeley, CA

  13. Habel C (1994) Discreteness, finiteness, and the structure of topological spaces. In: Eschenbach, Habel, Smith (eds) Topological Foundations of Cognitive Science, FISI-CS workshop Buffalo, NY, Graduiertenkolleg Kognitionswissenschaft, Hamburg

  14. Hayes P (1978) The naive physics manifesto. In: Michie (ed) Expert Systems in the Microelectronic Age, Edinburgh University Press, Edinburgh

  15. Isli A, Cohn AG (2000) A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence 122(1-2):137–187

    Article  MathSciNet  MATH  Google Scholar 

  16. Knauff M, Rauh R, Schlieder C (1995) Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen’s calculus. In: Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, Mahwah, NJ, pp 200–205

  17. Knauff M, Rauh R, Renz J (1997) A cognitive assessment of topological spatial relations: Results from an empirical investigation. In: Proceedings of the 3rd International Conference on Spatial Information Theory (COSIT’97)

  18. Krumnack A, Bucher L, Nejasmic J, Nebel B, Knauff M (2011) A model for relational reasoning as verbal reasoning. Cognitive Systems Research 12(3-4):377–392

    Article  Google Scholar 

  19. Kuipers BJ (1978) Modelling spatial knowledge. Cognitive Science 2:129–153

    Article  Google Scholar 

  20. Ligozat G (1998) Reasoning about cardinal directions. Journal of Visual Languages and Computing 9(1):23–44

    Article  Google Scholar 

  21. Liu W, Zhang X, Li S, Ying M (2010) Reasoning about cardinal directions between extended objects. Artif Intell 174:951–983, DOI: http://dx.doi.org/10.1016/j.artint.2010.05.006

    Article  MathSciNet  MATH  Google Scholar 

  22. Montello DR (1993) Scale and multiple psychologies of space. In: Frank AU, Campari I (eds) Spatial Information Theory – A Theoretical Basis for GIS, Springer-Verlag, Berlin, Heidelberg, New York, pp 312–321

  23. Moratz R, Renz J, Wolter D (2000) Qualitative spatial reasoning about line segments. In: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI-2000), IOS Press, Vienna, Austria

  24. Muller P (1998) A qualitative theory of motion based on spatio-temporal primitives. In: Cohn A, Schubert L, Shapiro S (eds) Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference (KR-98), Morgan Kaufmann, Trento, Italy, pp 131–142

  25. Nebel B, Scivos A (2002) Formal properties of constraint calculi for qualitative spatial reasoning. KI 16(4):14–18

    Google Scholar 

  26. Piaget J, Inhelder B (1956) The Child’s Conception of Space. Routledge, London

    Google Scholar 

  27. Ragni M, Knauff M, Nebel B (2005) A computational model for spatial reasoning with mental models. In: Proceedings of the 27th Annual Cognitive Science Conference (CogSci-05), Lawrence Erlbaum, pp 1797–1806

  28. Randell DA, Cohn AG (1989) Modelling topological and metrical properties of physical processes. In: Brachman R, Levesque HJ, Reiter R (eds) Principles of Knowledge Representation and Reasoning: Proceedings of the 1st International Conference (KR-89), Morgan Kaufmann, Toronto, ON, pp 55–66

  29. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: Nebel B, Swartout W, Rich C (eds) Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference (KR-92), Morgan Kaufmann, Cambridge, MA, pp 165–176

  30. Renz J, Nebel B (1999) On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the Region Connection Calculus. Artificial Intelligence 108(1-2):69–123, online: ftp://ftp.informatik.uni-freiburg.de/papers/ki/renz-nebel-aij.ps.gz

    Article  MathSciNet  MATH  Google Scholar 

  31. Renz J, Nebel B (2001) Efficient methods for qualitative spatial reasoning. Journal of Artificial Intelligence Research 15:289–318

    MathSciNet  MATH  Google Scholar 

  32. Renz J, Nebel B (2007) Qualitative spatial reasoning using constraint calculi. In: Aiello M, Pratt-Hartmann I, van Benthem J (eds) Handbook of Spatial Logics, Springer-Verlag, Berlin, Heidelberg, New York, pp 161–215

  33. Sharma J, Flewelling D, Egenhofer M (1994) A qualitative spatial reasoner. In: Sixth International Symposium on Spatial Data Handling, Edinburgh, Scotland, pp 665–681, online: http://www.spatial.maine.edu/ max/QR.pdf

  34. Walischewski H (1999) Learning regions of interest in postal automation. In: Proceedings of the Fifth International Conference on Document Analysis and Recognition (ICDAR’99), Bangalore, India

  35. Werner S, Habel C (1999) Spatial reference systems. Spatial Cognition and Computation 1(4):3–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Nebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nebel, B., Freksa, C. AI Approaches to Cognitive Systems – The Example of Spatial Cognition. Informatik Spektrum 34, 462–468 (2011). https://doi.org/10.1007/s00287-011-0555-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00287-011-0555-6

Keywords

Navigation