Skip to main content

Advertisement

Log in

When does colonisation of a semi-arid hillslope generate vegetation patterns?

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Patterned vegetation occurs in many semi-arid regions of the world. Most previous studies have assumed that patterns form from a starting point of uniform vegetation, for example as a response to a decrease in mean annual rainfall. However an alternative possibility is that patterns are generated when bare ground is colonised. This paper investigates the conditions under which colonisation leads to patterning on sloping ground. The slope gradient plays an important role because of the downhill flow of rainwater. One long-established consequence of this is that patterns are organised into stripes running parallel to the contours; such patterns are known as banded vegetation or tiger bush. This paper shows that the slope also has an important effect on colonisation, since the uphill and downhill edges of an isolated vegetation patch have different dynamics. For the much-used Klausmeier model for semi-arid vegetation, the author shows that without a term representing water diffusion, colonisation always generates uniform vegetation rather than a pattern. However the combination of a sufficiently large water diffusion term and a sufficiently low slope gradient does lead to colonisation-induced patterning. The author goes on to consider colonisation in the Rietkerk model, which is also in widespread use: the same conclusions apply for this model provided that a small threshold is imposed on vegetation biomass, below which plant growth is set to zero. Since the two models are quite different mathematically, this suggests that the predictions are a consequence of the basic underlying assumption of water redistribution as the pattern generation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Assessment of vegetation band migration using satellite imagery was made possible by the declassification in 1995 of images from the US satellite missions Corona (1959–1972), Argon (1961–1964) and Lanyard (1963).

  2. The numerical details of my implementation are as follows. I solve (1) using a semi-implicit finite difference scheme with upwinding, using a grid spacing \(\delta x=0.5\) and a time step \(\delta t=\min \{0.8\delta x/\nu ,\,0.1\delta x^2/\max \{D,1\}\}\); here the factor of 0.8 ensures that the CFL number is less than 1. I solve on a space domain of length 500 with Dirichlet conditions \((u,w)=(0,A)\) at \(x=-250\) and \((u,w)=(u_+,w_+)\) at \(x=250\). I solve over a time interval of length 1000. For the first iteration of the bisection method I use initial conditions \((u,w)=(0,A)\) on \(-250<x<0\) and \((u,w)=(u_+,w_+)\) on \(0<x<250\). For subsequent iterations I use the final solution form from the previous iteration, translated to be centred at \(x=0\): this accelerates convergence to the travelling wave profile. I estimate the velocity of this wave via the distance travelled over the final 100 time units, or over an earlier 100 time units if the front reaches an end of the domain before the end of the solution period. I terminate my numerical bisection method when two successive values of A differ by less than \(10^{-3}\).

References

  • Anderson KE, Hilker FM, Nisbet RM (2012) Directional biases and resource-dependence in dispersal generate spatial patterning in a consumer–producer model. Ecol Lett 15:209–217

    Article  Google Scholar 

  • Archer NAL, Quinton JN, Hess TM (2012) Patch vegetation and water redistribution above and below ground in south-east Spain. Ecohydrology 5:108–120

    Article  Google Scholar 

  • Atkinson K, Weimin H, Stewart DE (2009) Numerical solution of ordinary differential equations. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Barbier N, Couteron P, Lejoly J, Deblauwe V, Lejeune O (2006) Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems. Ecology 94:537–547

    Article  Google Scholar 

  • Baudena M, Rietkerk M (2013) Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor Ecol 6:131–141

    Article  Google Scholar 

  • Bel G, Hagberg A, Meron E (2012) Gradual regime shifts in spatially extended ecosystems. Theor Ecol 5:591–604

    Article  Google Scholar 

  • Benguria RD, Depassier MC (2014) Shift in the speed of reaction–diffusion equation with a cut-off: pushed and bistable fronts. Phys D 280:38–43

    Article  MathSciNet  Google Scholar 

  • Berg SS, Dunkerley DL (2004) Patterned mulga near Alice Springs, central Australia, and the potential threat of firewood collection on this vegetation community. J Arid Environ 59:313–350

    Article  Google Scholar 

  • Boaler SB, Hodge CAH (1964) Observations on vegetation arcs in the northern region, Somali Republic. J Ecol 52:511–544

    Article  Google Scholar 

  • Bochet E, García-Fayos P, Poesen J (2009) Topographic thresholds for plant colonization on semi-arid eroded slopes. Earth Surf Proc Land 34:1758–1771

    Article  Google Scholar 

  • Bonachela JA, Pringle RM, Sheffer E, Coverdale TC, Guyton JA, Caylor KK, Levin SA, Tarnita CE (2015) Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science 347:651–655

    Article  Google Scholar 

  • Borthagaray AI, Fuentes MA, Marquet PA (2010) Vegetation pattern formation in a fog-dependent ecosystem. J Theor Biol 265:18–26

    Article  MathSciNet  Google Scholar 

  • Buis E, Veldkamp A, Boeken B, Van Breemen N (2009) Controls on plant functional surface cover types along a precipitation gradient in the Negev Desert of Israel. J Arid Environ 73:82–90

    Article  Google Scholar 

  • Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R (2004) Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena 55:341–365

    Article  Google Scholar 

  • Cartení F, Marasco A, Bonanomi G, Mazzoleni S, Rietkerk M, Giannino F (2012) Negative plant soil feedback and ring formation in clonal plants. J Theor Biol 313:153–161

    Article  MathSciNet  Google Scholar 

  • Caylor KK, Okin GS, Turnbull L, Wainwright J, Wiegand T, Franz TE, Parsons AJ (2014) Integrating short- and long-range processes into models: the emergence of pattern. In: Mueller EV, Wainwright J, Parsons AJ, Turnbull L (eds) Patterns of land degradation in drylands—understanding self-organised ecogeomorphic systems. Springer, Dordrecht, pp 141–170

    Chapter  Google Scholar 

  • Corrado R, Cherubini AM, Pennetta C (2014) Early warning signals of desertification transitions in semiarid ecosystems. Phys Rev E 90:062705

    Article  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cruickshank I, Gurney WS, Veitch AR (1999) The characteristics of epidemics and invasions with thresholds. Theor Popul Biol 56:279–292

    Article  MATH  Google Scholar 

  • Dagbovie AS, Sherratt JA (2014) Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments. J R Soc Interface 11:20140465

    Article  Google Scholar 

  • Davis HG, Taylor CM, Lambrinos JG, Strong DR (2004) Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). PNAS USA 101:13804–13807

    Article  Google Scholar 

  • Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J (2008) The global biogeography of semi-arid periodic vegetation patterns. Glob Ecol Biogoegr 17:715–723

    Article  Google Scholar 

  • Deblauwe V, Couteron P, Lejeune O, Bogaert J, Barbier N (2011) Environmental modulation of self-organized periodic vegetation patterns in Sudan. Ecography 34:990–1001

    Article  Google Scholar 

  • Deblauwe V, Couteron P, Bogaert J, Barbier N (2012) Determinants and dynamics of banded vegetation pattern migration in arid climates. Ecol Monogr 82:3–21

    Article  Google Scholar 

  • Dembélé F, Picard N, Karembé M, Birnbaum P (2006) Tree vegetation patterns along a gradient of human disturbance in the Sahelian area of Mali. J Arid Environ 64:284–297

    Article  Google Scholar 

  • Dralle D, Boisrame G, Thompson SE (2014) Spatially variable groundwater recharge and the hillslope hydrologic response: analytical solutions to the linearized hillslope Boussinesq equation. Water Resour Res 50:8515–8530

    Article  Google Scholar 

  • Duffy KJ, Patrick KL, Johnson SD (2013) Does the likelihood of an Allee effect on plant fecundity depend on the type of pollinator? J Ecol 101:953–962

    Article  Google Scholar 

  • Dunkerley DL, Brown KJ (2002) Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance. J Arid Environ 52:163–181

    Article  Google Scholar 

  • Galle S, Ehrmann M, Peugeot C (1999) Water balance in a banded vegetation pattern: a case study of tiger bush in western Niger. Catena 37:197–216

    Article  Google Scholar 

  • Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E (2004) Ecosystem engineers: from pattern formation to habitat creation. Phys Rev Lett 93:098105

    Article  Google Scholar 

  • Gilad E, Von Hardenberg J, Provenzale A, Shachak M, Meron E (2007) A mathematical model of plants as ecosystem engineers. J Theor Biol 244:680–691

    Article  MathSciNet  Google Scholar 

  • Gowda K, Riecke H, Silber M (2014) Transitions between patterned states in vegetation models for semiarid ecosystems. Phys Rev E 89:022701

    Article  Google Scholar 

  • Greenwood JEGW (1957) The development of vegetation patterns in Somaliland Protectorate. Geogr J 123:465–473

    Article  Google Scholar 

  • Gurney WSC, Veitch AR, Cruickshank I, McGeachin G (1998) Circles and spirals: population persistence in a spatially explicit predator–prey model. Ecology 79:2516–2530

    Google Scholar 

  • Guttal V, Jayaprakash C (2007) Self-organization and productivity in semi-arid ecosystems: implications of seasonality in rainfall. J Theor Biol 248:290–500

    Article  MathSciNet  Google Scholar 

  • Hagan PS (1981) The instability of non-monotonic wave solutions of parabolic equations. Stud Appl Math 64:57–88

    Article  MathSciNet  MATH  Google Scholar 

  • Hejcmanová P, Hejcman M, Camara AA, Antonínová M (2010) Exclusion of livestock grazing and wood collection in dryland savannah: an effect on long-term vegetation succession. Afr J Ecol 48:408–417

    Article  Google Scholar 

  • Hemming CF (1965) Vegetation arcs in Somaliland. J Ecol 53:57–67

    Article  Google Scholar 

  • Henry D (1981) Geometric theory of semilinear parabolic equations. Springer, Berlin

    MATH  Google Scholar 

  • HilleRisLambers R, Rietkerk M, van de Bosch F, Prins HHT, de Kroon H (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61

    Article  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    Google Scholar 

  • Istanbulluoglu E, Bras RL (2006) On the dynamics of soil moisture, vegetation, and erosion: implications of climate variability and change. Water Resour Res 42:W06418

    Article  Google Scholar 

  • Kealy BJ, Wollkind DJ (2012) A nonlinear stability analysis of vegetative Turing pattern formation for an interaction–diffusion plant-surface water model system in an arid flat environment. Bull Math Biol 74:803–833

    Article  MathSciNet  MATH  Google Scholar 

  • Kéfi S, Rietkerk M, van Baalen M, Loreau M (2007) Local facilitation, bistability and transitions in arid ecosystems. Theor Popul Biol 71:367–379

    Article  MATH  Google Scholar 

  • Kéfi S, Rietkerk M, Katul GG (2008) Vegetation pattern shift as a result of rising atmospheric \({\rm CO}_2\) in arid ecosystems. Theor Popul Biol 74:332–344

    Article  MATH  Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Article  Google Scholar 

  • Kletter AY, von Hardenberg J, Meron E, Provenzale A (2009) Patterned vegetation and rainfall intermittency. J Theor Biol 256:574–583

    Article  MathSciNet  Google Scholar 

  • Kusserow H, Haenisch H (1999) Monitoring the dynamics of “tiger bush” (brousse tigrée) in the West African Sahel (Niger) by a combination of Landsat MSS and TM, SPOT, aerial and kite photographs. Photogramm Fernerkund Geoinf 2:77–94

    Google Scholar 

  • Lefever R, Barbier H, Couteron P, Lejeune O (2009) Deeply gapped vegetation patterns: on crown/root allometry, criticality and desertification. J Theor Biol 261:194–209

    Article  MathSciNet  Google Scholar 

  • Lefever R, Lejeune O (1997) On the origin of tiger bush. Bull Math Biol 59:263–294

    Article  MATH  Google Scholar 

  • Liu Q-X, Jin Z, Li BL (2008) Numerical investigation of spatial pattern in a vegetation model with feedback function. J Theor Biol 254:350–360

    Article  MathSciNet  Google Scholar 

  • Marasco A, Iuorio A, Cartení F, Bonanomi G, Tartakovsky DM, Mazzoleni S, Giannino F (2014) Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback. Bull Math Biol 76:2866–2883

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez-García R, Calabrese JM, Garcia EH, López C (2014) Minimal mechanisms for vegetation patterns in semiarid regions. Philos Trans R Soc A 372:20140068

    Article  Google Scholar 

  • Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y (2004) Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals 19:367–376

    Article  MATH  Google Scholar 

  • Meron E (2012) Pattern-formation approach to modelling spatially extended ecosystems. Ecol Model 234:70–82

    Article  Google Scholar 

  • Moreno-de las Heras M, Saco PM, Willgoose GR, Tongway DJ (2012) Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall-use efficiency of vegetation. J Geophys Res 117:G03009

    Article  Google Scholar 

  • Müller J (2013) Floristic and structural pattern and current distribution of tiger bush vegetation in Burkina Faso (West Africa), assessed by means of belt transects and spatial analysis. Appl Ecol Environ Res 11:153–171

    Article  Google Scholar 

  • Murray JD (2003) Mathematical biology II: spatial models and biomedical applications. Springer, New York

    MATH  Google Scholar 

  • Nippert JB, Knapp AK (2007a) Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116:1017–1029

    Article  Google Scholar 

  • Nippert JB, Knapp AK (2007b) Linking water uptake with rooting patterns in grassland species. Oecologia 153:261–272

    Article  Google Scholar 

  • Pelletier JD, DeLong SB, Orem CA, Becerra P, Compton K, Gressett K, Lyons-Baral J, McGuire LA, Molaro JL, Spinler JC (2012) How do vegetation bands form in dry lands? Insights from numerical modeling and field studies in southern Nevada. USA. J Geophys Res 117:F04026

    Google Scholar 

  • Penny GG, Daniels KE, Thompson SE (2013) Local properties of patterned vegetation: quantifying endogenous and exogenous effects. Philos Trans R Soc A 371:20120359

    Article  Google Scholar 

  • Popović N (2011) A geometric analysis of front propagation in a family of degenerate reaction–diffusion equations with cutoff. ZAMM 62:405–437

    Article  MathSciNet  MATH  Google Scholar 

  • Pueyo Y, Kéfi S, Alados CL, Rietkerk M (2008) Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos 117:1522–1532

    Article  Google Scholar 

  • Pueyo Y, Moret-Fernández D, Saiz H, Bueno CG, Alados CL (2013) Relationships between plant spatial patterns, water infiltration capacity, and plant community composition in semi-arid mediterranean ecosystems along stress gradients. Ecosystems 16:452–466

    Article  Google Scholar 

  • Rietkerk M, Ketner P, Burger J, Hoorens B, Olff H (2000) Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa. Plant Ecol 148:207–224

    Article  Google Scholar 

  • Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R, van de Koppel J, Prins HHT, de Roos A (2002) Self-organisation of vegetation in arid ecosystems. Am Nat 160:524–530

    Article  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929

    Article  Google Scholar 

  • Saco PM, Willgoose GR, Hancock GR (2007) Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol Earth Syst Sci 11:1717–1730

    Article  Google Scholar 

  • Schwinning S (2010) The ecohydrology of roots in rocks. Ecohydrology 3:238–245

    Google Scholar 

  • Sheffer E, Hardenberg J, Yizhaq H, Shachak M, Meron E (2013) Emerged or imposed: a theory on the role of physical templates and self-organisation for vegetation patchiness. Ecol Lett 16:127–139

    Article  Google Scholar 

  • Sherratt JA (2005) An analysis of vegetation stripe formation in semi-arid landscapes. J Math Biol 51:183–197

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2010) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I. Nonlinearity 23:2657–2675

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Smith MJ, Rademacher JDM (2010) Patterns of sources and sinks in the complex Ginzburg–Landau equation with zero linear dispersion. SIAM J Appl Dyn Syst 9:883–918

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2011) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II. Patterns with the largest possible propagation speeds. Proc R Soc Lond A 467:3272–3294

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Synodinos AD (2012) Vegetation patterns and desertification waves in semi-arid environments: mathematical models based on local facilitation in plants. Discret Contin Dyn Syst Ser B 17:2815–2827

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013a) History-dependent patterns of whole ecosystems. Ecol Complex 14:8–20

    Article  Google Scholar 

  • Sherratt JA (2013b) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions. Phys D 242:30–41

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013c) Pattern solutions of the Klausmeier model for banded vegetation semi-arid environments IV: slowly moving patterns and their stability. SIAM J Appl Math 73:330–350

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013d) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments V: the transition from patterns to desert. SIAM J Appl Math 73:1347–1367

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2015) Using wavelength and slope to infer the historical origin of semi-arid vegetation bands. PNAS USA 112:4202–4207

    Article  Google Scholar 

  • Sherratt JA, Lord GJ (2007) Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor Popul Biol 71:1–11

    Article  MATH  Google Scholar 

  • Siero E, Doelman A, Eppinga MB, Rademacher J, Rietkerk M, Siteur K (2015) Stripe pattern selection by advective reaction–diffusion systems: resilience of banded vegetation on slopes. Chaos 25:036411

    Article  MathSciNet  Google Scholar 

  • Siteur K, Eppinga MB, Karssenberg D, Baudena M, Bierkens MFP, Rietkerk M (2014a) How will increases in rainfall intensity affect semiarid ecosystems? Water Resour Res 50:5980–6001

    Article  Google Scholar 

  • Siteur K, Siero E, Eppinga MB, Rademacher J, Doelman A, Rietkerk M (2014b) Beyond Turing: the response of patterned ecosystems to environmental change. Ecol Complex 20:81–96

    Article  MATH  Google Scholar 

  • Stewart J, Parsons AJ, Wainwright J, Okin GS, Bestelmeyer B, Fredrickson EL, Schlesinger WH (2014) Modelling emergent patterns of dynamic desert ecosystems. Ecol Monogr 84:373–410

    Article  Google Scholar 

  • Thompson SE, Harman CJ, Heine P, Katul GG (2010) Vegetation–infiltration relationships across climatic and soil type gradients. J Geophys Res Biogeosci 115:G02023

    Article  Google Scholar 

  • Thompson S, Katul G, Konings A, Ridolfi L (2011) Unsteady overland flow on flat surfaces induced by spatial permeability contrasts. Adv Water Res 34:1049–1058

    Article  Google Scholar 

  • Thompson S, Katul G (2009) Secondary seed dispersal and its role in landscape organization. Geophys Res Lett 36:L02402

    Article  Google Scholar 

  • Tongway DJ, Ludwig JA (2001) Theories on the origins, maintainance, dynamics, and functioning of banded landscapes. In: Tongway DJ, Valentin C, Seghieri J (eds) Banded vegetation patterning in arid and semi-arid environments. Springer, New York, pp 20–31

    Chapter  Google Scholar 

  • Ursino N (2005) The influence of soil properties on the formation of unstable vegetation patterns on hillsides of semiarid catchments. Adv Water Resour 28:956–963

    Article  Google Scholar 

  • Ursino N, Contarini S (2006) Stability of banded vegetation patterns under seasonal rainfall and limited soil moisture storage capacity. Adv Water Resour 29:1556–1564

    Article  Google Scholar 

  • Valentin C, d’Herbès JM, Poesen J (1999) Soil and water components of banded vegetation patterns. Catena 37:1–24

    Article  Google Scholar 

  • van der Stelt S, Doelman A, Hek G, Rademacher JDM (2013) Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model. J Nonlinear Sci 23:39–95

    Article  MathSciNet  MATH  Google Scholar 

  • Vezzoli R, De Michele C, Pavlopoulos H, Scholes RJ (2008) Dryland ecosystems: the coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality. Phys Rev E 77:051908

    Article  Google Scholar 

  • von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of vegetation patterns and desertification. Phys Rev Lett 87:198101

    Article  Google Scholar 

  • White LP (1969) Vegetation arcs in Jordan. J Ecol 57:461–464

    Article  Google Scholar 

  • Worrall GA (1959) The Butana grass patterns. J Soil Sci 10:34–53

    Article  Google Scholar 

  • Wu XB, Thurow TL, Whisenant SG (2000) Fragmentation and changes in hydrologic function of tiger bush landscapes, south-west Niger. J Ecol 88:790–800

    Article  Google Scholar 

  • Yizhaq H, Sela S, Svoray T, Assouline S, Bel G (2014) Effects of heterogeneous soil-water diffusivity on vegetation pattern formation. Water Resour Res 50:5743–5758

    Article  Google Scholar 

  • Zelnik YR, Kinast S, Yizhaq H, Bel G, Meron E (2013) Regime shifts in models of dryland vegetation. Philos Trans R Soc A 371:20120358

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to Eleanor Tanner for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Sherratt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherratt, J.A. When does colonisation of a semi-arid hillslope generate vegetation patterns?. J. Math. Biol. 73, 199–226 (2016). https://doi.org/10.1007/s00285-015-0942-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0942-8

Keywords

Mathematics Subject Classification

Navigation